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2.6 The microscope equation

As we saw in Section 2.2, the graph of a function y = f(z) near a point = a is similar to
the graph of the tangent line to f(z) at that point, if f'(a) exists. In this section, we use this
observation to perform “linear approximation.”

We begin by recalling (cf. equation (2.2.4)) the following:

If f(x) is locally linear at x = a, then

fla+ Azx) = f(a) + f'(a)Ax for Az small enough.

The microscope equation

It’s called “the microscope equation” because it tells us what a function y = f(z), locally linear
at a point x = a, looks like “under a microscope” focussed on that point: it looks like its tangent
line there!

The geometry of the situation is captured in the following picture.
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Figure 2.7. The microscope equation

The utility of the microscope equation, for the purposes of the present section, is as follows.
Sometimes, one has explicit information about a function and its derivative at a particular point
x = a, but this function is less concretely understood at nearby points. The microscope equation
transforms the known information at the given point into approximate information about what
happens in the vicinity.

Example 2.6.1. Use the microscope equation to approximate v/65.

Solution. The idea is this: a = 64 is an “easy” input for the square root function f(z) = y/z: both
the function value f(a) = f(64) = v/64 = 8 and the derivative value f'(a) = f'(64) =  x 6471/2 =
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1/16 are known, and are “simple.” We will use this information to get a good approximation to
the value of this function at the nearby, but less “simple,” input x = 65.

To do this, we note that 65 = 64 + 1, so we can write 65 = a + Az where, again, a = 64, and
Az = 1. Then

V65 = f(65) = f(a+ Az) =~ f(a) + f'(a)Az = V64 + % x 1 = 8.0625.

To summarize: by the microscope equation, v/65 ~ 8.0625.

Of course, we could have approximated v/65 more naively: we might have argued that 65 is close
to 64, so the square root of 65 should be close to the square root of 64, so the square root of 65
should be about 8. But note that this does not give nearly as good an approximation. In fact, a
calculator gives the “true” answer /65 = 8.0622.... So our linear approximation is off by less than
three ten-thousandths, whereas the estimate V65 ~ 8 is more than six hundredths away from the
actual value.

Regarding the above example, we make two observations. First: we needed to know f’(64). In
general, the microscope equation — that is, linear approximation — works only when we have
information about a function and its derivative at a particular point.

Second: wouldn’t it have been better to just use a calculator in the first place? It gives a better
result and is much easier! Well yes, this is all true. BUT: your calculator itself uses, in essence,
the microscope equation! More specifically: machine calculations of things like /65, cos(m/7),
3tan(0-2) and other quantities that aren’t as “simple” as v/64 often invoke algorithms that amount
to linear approximation.

Of course technology does, as noted above, generally, provide more accurate results than one might
obtain through the method of Example 2.6.1. But this is not necessarily because technology uses
a different method, it’s because technology applies this method repeatedly.

To explain this, let’s suppose we don’t have a calculator, and we don’t know anything about
V65, other than the approximation 8.0625 obtained above. Let’s write e for the error in this
approximation. That is, e = 8.0625 — v/65. Again, we don’t know /65 exactly, so we don’t know
e exactly. But we can approzimate e using (essentially) the microscope equation! Adding this
approximation of e to our original estimate of V65 gives us a better estimate of this square root.
And we can repeat this process over and over, obtaining a better approximation each time.

This process, and variants of it, are at the heart of “machine” computation of quantities involving
more than just the usual addition, multiplication, and so on.

Further, repeated application of the microscope equation is how such quantities were approximated
back in the day, before such machines existed.

Often, when implementing the microscope equation, we want to specify our function f(z) and
our “good” point x = a, but not necessarily our Ax. Doing this will provide us with a recipe for
approximating f(x) at any point “near” x = a.

Example 2.6.2. Let g(z) = 1/(1 + x)3.
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(a) Write down the microscope equation for g(z) at = 0.

b) Use this result to estimate 1/0.99% and 1/1.033.
(

Solution. (a) Here our “good” point is a = 0. We have

1 7 B
mzls g(a)—g(())—m——

g(a) = g(0) =

We are not yet choosing a particular Az, so for the moment, we let Az be an arbitrary number
(though we think of Az as being “small”). Then the microscope equation tells us:

g(a+ Az) = g(a) + ¢'(a) Az
g(0 + Az) = g(0) + ¢'(0) Az
g(Ax) =~ 1—-3Azx

1

(b) To estimate these numbers, we apply the above result with appropriate choices for Az. For
the first quantity, we choose A = —0.01, since this turns the left-hand side of equation (2.6.1) into
1/0.99%. So that equation tells us

1 1

oF A Nl 3Az =1 —3(—0.01) = 1.03.

Similarly, with A = 0.03, equation (2.6.1) gives

Ll 3Ar—1-3(003) =091
1035 (1+Az)p e RO

A calculator gives 1/0.99% = 1.03061... and 1/1.03* = 0.91514.... So the first estimate is closer
to the true value than is the second. This is because the first estimate entails a Az of smaller
magnitude (JAz| = 0.01 as opposed to |Az| = 0.03). Generally speaking, the smaller Az, the
better an approximation the microscope equation affords.

Here is a microscope equation that also involves the chain rule.

Example 2.6.3. (a) Write down the microscope equation for f(z) = /4 + sin(x) at x = 0.

(b) Approximate /4 + sin(0.05).

Solution. (a) We have

f(z) = %[ 4+ sin(z)] = d% [(4 + sin(2))"/?] = %(4 + sin(x))W% [4 + sin(z)]
—1 sin(z))~ Y2 . cos(x :L(x)
= 54 +sin(z)) /2-(0 + cos(x)) Nl

We make the following table:
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f(z) = \/m f(z) = cos(x)

24/4 + sin(x)

cos(0) 1 1

fla) = /A4 5in(0) = v =2 fla)=3 Itsn(0) 2x2 4

So the microscope equation reads
fla+Az) ~ f(a) + f'(a) Az

1

V4 +sin(Az) =~ 2 + %Aw.

(b) Putting Az = 0.05 into our result from part (a) gives
1
4 4 sin(0.05) ~ 2 + 1 x 0.05 = 2.0125.

(Compare this with the “true” numerical value /4 4 sin(0.05) = 2.012456....)

Example 2.6.4. Suppose f(t) and g(t) are differentiable functions, with f(2) = 3, g(2) = 4,
f'(2) =2, and ¢'(2) = —1. Write down the microscope equation for h(t) = f(t)/g(t) at t = 2.

Solution. We have h(2) = f(2)/9(2) = 3/4, and

vz — SR —FQ)g(2) _4x2-8x (1) _ 11

(9(2))? 4 16
So by the microscope equation,
11
h(t) =~ h(2) + h'(2)At = Z + 1—6At

The microscope equation can also sometimes provide us with a heuristic, or “big picture,” sense
of how things change (approximately), as the following example illustrates.

Example 2.6.5. Show that, if the radius of a sphere increases by a small amount, then the volume

of that sphere increase by approximately that same amount times the original surface area of the
4
sphere. Use the fact that, again, a sphere of radius r has volume V (r) = §7T7”3.

Solution. Let’s imagine that our sphere initially has radius » = a, and that this radius expands
a little bit, to r = a+ Ar. By the microscope equation, its new volume is given approximately by:

4
Via+ Ar) = V(a) +V'(a)Ar = gwa?’ + 4ma’Ar.

4 .
That is, the new volume is roughly the original volume, gﬂa‘5, plus the increase in radius Ar times

the original surface area 4ma®. (This is the surface area of a sphere of radius a.)
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The above result reflects our intuition that, because the added volume comprises a thin spherical
“shell,” this added volume is roughly equal to the surface area of that shell, times its thickness. Of
course the two are not exactly equal. The shell has an inner surface and an outer surface, whose
surface areas are different; because the shell is “curved,” one cannot compute its volume simply
by multiplying the inner surface area (or the outer) by the shell’s thickness. But, as the above
example shows, one can approximate this volume in this manner, and the thinner the shell, the
more accurate the approximation.

Exercises

Part 1: The microscope equation for functions defined by simple formulas

1. Approximate v/7.9. Use f(z) = /x = x'/3, so that

F@) =307 =
Also use a = 8.

2. Approximate v/620. Use f(z) = z. Hint: v/625 = 5. How far is your estimate from the
value given by a calculator?

3. (a) Write down the microscope equation for y = y/z at x = 3600.

(b) Use the microscope equation to estimate v/3628 and v/3592. How far are these estimates from
the values given by a calculator?

4. (a) Write down the microscope equation for h(z) = 7V/2 = 1/\/z at x = 25.

(b) What estimate does the microscope equation give for f(25.05) = 1/4/25.057 Calculate the
true value of 1/4/25.05 and compare the two values; how far is the microscope estimate from the
true value?

(c) What estimate does the microscope equation give for 1/4/24.5? How far is this from the true
value?

(d) What estimate does the microscope equation give for 1/4/267 How far is this from the true
value?

5. (a) Write down the microscope equation for y = sin(z) at = = 0.

(b) Using the microscope equation, estimate the following values: sin .3, sin.007, sin(—.02). Check

these values with a calculator. (Remember to set your calculator to radian mode!)

6. (a) Write down the microscope equation for f(z) = sin(z) at x = 7.
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(b) Use this result to estimate sin(3).

7. (a) Write down the microscope equation for y = tan(z) at = = 0.

(b) Estimate the following values: tan(.007), tan(.3), tan(—.02). Check these values with a
calculator.

8. (a) Write down the microscope equation for f(x) = 2% at x = 4. Use the fact that f'(x) =
In(2)2* and In(2) ~ 0.69315.

(b) Estimate 239 in two different ways:

(i) Use your above microscope equation with Az = —0.95.

(ii) First, use your above microscope equation to estimate 24%. Then use the fact that
9405  94.05

23.05 — 24.05—1 —
21 2

(c) Compare your above two estimates to the true value of 23%°. Which estimate is better? Why
do you think this is?

Part 2: The microscope equation for functions defined incompletely

9. (a) Suppose y = f(z) is a function for which f(5) = 12 and f/(5) = .4. Write down the
microscope equation for f at z = 5.

(b) What would you see if you were to graph f(z) over the domain 4.999 < z < 5.0017

(c) What estimate does the microscope equation give for f(5.3)7

(d) What estimates does the microscope equation give for the following: f(5.23), f(4.9), f(4.82),
f(9)? Do you consider these estimates to be equally reliable?

10. (a) Suppose z = g¢(t) is a function for which g(—4) = 7 and ¢'(—4) = 3.5. Write down the
microscope equation for g at t = —4.

(b) Estimate g(—4.2) and g(—3.75).

(c) For what value of ¢ near —4 would you estimate that g(¢) = 67 For what value of ¢ would you

estimate g(t) = 8.57

11. If f(a) = b, f'(a) = —3 and if k is small, which of the following is the estimate to f(a + k)
given by the microscope equation?

a+ 3k, b+3k, a+3b, b—3k, a— 3k, 3a—b, a* —3b, f'(a+k)
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12. Suppose a person has travelled D feet in ¢ seconds. Then D’(t) is the person’s velocity at
time ¢; D’(t) has units of feet per second.

(a) Suppose D(5) = 30 feet and D’(5) = 5 feet/second. Estimate the following:

D(5.1) D(5.8) D(4.7)
(b) If D(2.8) = 22 feet, while D(3.1) = 26 feet, what would you estimate D’(3) to be?

13.  Fill in the blanks.
a) If f(3) =2 and f'(3) = 4, a reasonable estimate of f(3.2) is
b) If g(7) = 6 and ¢'(7) = .3, a reasonable estimate of g(6.6) is
If h(1.6) =1, h/(1.6) = —5, a reasonable estimate of () is 0.

)

(
(
(c)
(
(
(

d) If F(2) =0, F'(2) = .4, a reasonable estimate of F'(_ ) is .15.
e) If G(0) =2 and G'(0) = , a reasonable estimate of G(.4) is 1.6.
f) If H(3) = —3 and H'(3) = , a reasonable estimate of H(2.9) is —1.

14. Let f(t) and g(t) be as in Example 2.6.4 above. Write down the microscope equation for
k(t) = f(t)g(t) at t = 2, and use this result to estimate k(2.05).

15.  In manufacturing processes, the profit is usually a function of the number of units being
produced, among other things. Suppose we are studying some small industrial company that
produces n units in a week and makes a corresponding weekly profit of P. Assume P = P(n).

(a) If P(1000) = $500 and P’(1000) = $2/unit, then

P(1002) ~ P(995) ~ P( ) ~ $512

(b) If P(2000) = $3000 and P’'(2000) = —$5/unit, then

P(2010) ~ P(1992) ~ P( ) ~ $3100

(c) If P(1234) = $625 and P(1238) = $634, then what is an estimate for P’'(1236)?

Part 3: The microscope equation and the chain rule

For these exercises, you should refer especially to Example 2.6.3.

at x = 0.

16. (a) Write down the microscope equation for the function f(z) = - <

8
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1 1
b) Using this microscope equation, estimate and . How close are these answers to
(b) V/7.99 Vv/8.01

the “true” values you get from a calculator?

17. (a) Write down the microscope equation for y = v/2cos(z/4) at « = 7. Simplify your result
using the fact that cos(m/4) = sin(7/4) = 1/v/2.

(b) Use the microscope equation to estimate the values of cos(1.017/4) and cos(.9857/4). How
close are these answers to the “true” values you get from a calculator?

18. (a) Write down the microscope equation for w = {/8+2tan(z) at « = 0. (Recall that
V8 =2)
(b) Use the microscope equation to estimate the values of {/8 + 2tan(0.03) and {/8 + 2 tan(.3).

Which one of these values do you think is closer to the true value? Answer without a calculator,
and please explain. (You can check your answer with a calculator if you would like.)




