
Chapter 2

The derivative

In studying SIR and other phenomena in Chapter 1, we contented ourselves with an intuitive, or
heuristic, understanding of what a rate of change actually is. That is, we never defined rate of
change in a mathematically precise way.

In this chapter, we will provide such a definition. Two such definitions, actually – one of an average

rate of change, also known as a difference quotient, and one of the instantaneous rate of change,
also known as the derivative.

We’ve encountered both notions in the previous chapter. We now investigate these ideas more
formally, and in greater depth.

2.1 Rates of change

By an average rate of change of an output with respect to an input, we mean the net change in
output divided by the corresponding change in input. In preceding discussions, we have generally
taken our input variable to be time t, but other independent variables are possible, as illustrated
in the following example.

Example 2.1.1. Water density. Under appropriate atmospheric conditions, the density of
water, as a function of water temperature, may be modeled fairly well by the formula

D(C) = 999.973� 0.008(C � 4.06)2,

where C is temperature in degrees Celsius (�C) and D is density in kilograms per cubic meter
(kg/m3). This formula holds reasonably well for C between about 0 and 8 degrees Celsius.

(a) Find the average rate of change of D with respect to C, over each of the following intervals
(of temperature values, in �C): [1,6], [1,3], [1,2], [1,1.5], [1,1.1], and [1,1.01]. What are the
appropriate units for these rates of change?

(b) Repeat part (a), but this time with these temperature intervals: [2,7], [2,4], [2,3], [2,2.5],
[2,2.1], and [2,2.01].
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60 CHAPTER 2. THE DERIVATIVE

(c) Can we make sense of “the instantaneous rate of change of water density with respect to tem-
perature, at 1 degree Celsius”? If so, what numerical value might we give this instantaneous
rate of change? Answer the same questions for C = 2 degrees Celsius.

Solution (a) Over the interval [1,6], the average rate of change is

�D

�C
=

D(6)�D(1)

6� 1

kg/m3

�C
=

999.973� 0.008(6� 4.06)2 � (999.973� 0.008(1� 4.06)2)

5

kg/m3

�C

=
999.943� 999.898

5

kg/m3

�C
= 0.009

kg/m3

�C
.

Over [1,3], the average rate of change is

�D

�C
=

D(3)�D(1)

3� 1

kg/m3

�C
=

999.964� 999.898

2

kg/m3

�C
= 0.033

kg/m3

�C
.

In a similar manner, we find the remaining entries of the following table. (All entries in the second
row are in (kg/m3)/�C.)

Interval [1,6] [1,3] [1,2] [1,1.5] [1,1.1] [1,1.01]
�D/�C 0.009 0.033 0.041 0.045 0.048 0.049

(b) We need to compute
�D

�C
=

D(x)�D(2)

x� 2

for various values of x, getting closer and closer to 2 (namely, x = 7, 4, 3, 2.5, 2.1, 2.01). The
computations are much as in part (a), and are summarized in the table below. (Again, all average
rates of change are in (kg/m3)/�C.)

Interval [2,7] [2,4] [2,3] [2,2.5] [2,2.1] [2,2.01]
�D/�C -0.007 0.017 0.025 0.029 0.032 0.033

(c) In part (a), we computed the average rate of change �D/�C over shorter and shorter temper-
ature intervals [1,1 +�C]. We might think of the instantaneous rate of change of D with respect
to C, at C = 1, as “what happens to these average rates of change as the intervals [1,1 + �C]
become infinitesimally short.” Now observe from our computations in part (a) that, the shorter
our interval [1,1 +�C] – that is, the smaller our �C – the more �D/�C appears to zero in on
0.049. So we might say that the instantaneous rate of change of D with respect to C, at C = 1,
is about 0.049 (kg/m3)/�C.

Similarly, according to our computations in part (b), we might say that the instantaneous rate of
change of D with respect to C, at C = 2, is about 0.033 (kg/m3)/�C.

As the above example indicates, average rates of change may be expressed mathematically in terms
of functions.
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Definition 2.1.1. Consider a function y = f(x). Suppose x changes from a point x = a to a
point x = a+�x (so that x changes by �x). Then the corresponding change in y is

�y = f(a+�x)� f(a),

and we define the average rate of change of f , or of y, from x = a to x = a+�x, to be
the difference quotient

�y

�x
=

f(a+�x)� f(a)

�x
. (2.1.1)

Part (c) of the above example points to a crucial idea: the interpretation of an instantaneous rate
of change as a limit of average rates of change, as we average over shorter and shorter intervals.
That is: suppose we can somehow ascribe an actual mathematical value to “what happens to
the average rate of change (2.1.1) as �x shrinks to zero.” Then we should call this value “the
instantaneous rate of change of f(x) at x = a.”

Another name for such an instantaneous rate of change is derivative. The formal definition is as
follows.

Definition 2.1.2. Given a function y = f(x) and a point x = a, we define the instantaneous
rate of change, or derivative, of y = f(x) at x = a, denoted f

0(a), to be “what happens to
the average rate of change (2.1.1) as �x shrinks to zero.” In symbols,

f
0(a) = lim

�x!0

�y

�x
= lim

�x!0

f(a+�x)� f(a)

�x
, (2.1.2)

where the notation “ lim�x!0” is pronounced “the limit, as �x approaches zero.” This definition
applies whenever the limit in question exists.

The above definition is only “formal” insofar as the notion of “limit” is formal. We will content
ourselves with a working notion of “limit” – a notion that will allow us to compute some derivatives,
but will also provide some insight into how and when a derivative might fail to exist. We’ll return
to the latter issue in the next section. In the meantime, here are some computations that work.

Example 2.1.2. Let f(x) = x
2
. Find:

(a) The average rate of change of f(x) with respect to x, from x = 3 to x = 3.1, and from x = 3
to x = 3.01;

(b) The average rate of change of f(x) from x = 3 to x = 3 +�x, for an arbitrary �x 6= 0;

(c) The instantaneous rate of change of f(x) at x = 3.

Solution. (a) For the first of the two average rates of change, we set a = 3 and �x = 0.1. Then

�y

�x
=

f(a+�x)� f(a)

�x
=

f(3.1)� f(3)

0.1
=

3.12 � 32

0.1
=

9.61� 9

0.1
=

0.61

0.1
= 6.1.
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Similarly, for �x = 0.01, we have

�y

�x
=

f(3.01)� f(3)

0.01
=

3.012 � 32

0.01
=

9.0601� 9

0.01
=

0.0601

0.1
= 6.01.

(b) Here, we find that

�y

�x
=

f(a+�x)� f(a)

�x
=

f(3 +�x)� f(3)

�x
=

(3 +�x)2 � 32

�x

=
9 + 6�x+ (�x)2 � 9

�x
=

6�x+ (�x)2

�x
=

�x(6 +�x)

�x
= 6 +�x. (2.1.3)

(c) It’s quite clear that the the limit, as �x approaches zero, of the right-hand side of (2.1.3)
equals 6. But the left-hand and right-hand sides of (2.1.3) are equal, so the limit of the right-hand
side must equal the limit of the left-hand side. And the limit of the left-hand side is, by Definition
2.1.2, the instantaneous rate of change of f(x) at x = 3, also denoted f

0(3). In sum,

f
0(3) = lim

�x!0

�y

�x
= lim

�x!0
(6 +�x) = 6.

Note that the evaluation of f 0(3), in part (c) of the previous example, relied heavily on the algebra

employed in part (b). Specifically, in part (b) we were able to simplify the numerator �y of
our difference quotient, to the point where we could factor �x out of this numerator. We then
cancelled this factor against the �x in the denominator. This was crucial because, had a factor of
�x remained in the denominator, then letting �x ! 0 in part (c) would have effectively left us
with a zero in the denominator, and we know that can’t be good!

Derivative computations will typically entail some type of “cancellation in numerator and denom-
inator.” However, that cancellation can take a variety of forms, one of which is illustrated in the
following example.

Example 2.1.3. Let h(x) = sin(x). Find h
0(0). Use the “trigonometric limit formula”

lim
✓!0

sin(✓)

✓
= 1. (2.1.4)

(This formula is explored in the exercises below. Heuristically it says that, as an angle shrinks to
zero, its sine and its radian measure become very close to each other.)

Solution. By Definition 2.1.2 of the derivative, we have

h
0(0) = lim

�x!0

h(0 +�x)� h(0)

�x
= lim

�x!0

sin(�x)� sin(0)

�x
= lim

�x!0

sin(�x)� 0

�x
= lim

�x!0

sin(�x)

�x
= 1,

the last step by (2.1.4) (with ✓ = �x).
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We will explore other derivative computations in the exercises below. In particular, we’ll use the
definition of the derivative to confirm our intuition about instantaneous rates of change in the
water density context (Example 2.1.1) above.

We now wish to interpret the derivative geometrically. To do this, let’s note that the average rate
of change

�y

�x
=

f(a+�x)� f(a)

�x

is just the slope of the line through the points (a,f(a)) and (a +�x,f(a +�x)) on the graph of
f . This line is called a secant line to the graph of f(x), meaning a line that intersects this graph
in (at least) two points.

Figure 2.1. An average rate of change is the slope of a secant line

What does this have to do with derivatives? Well: note that, by the definition of the derivative
and by the above geometric arguments,

f
0(a) = lim

�x!0

�y

�x
= lim

�x!0

f(a+�x)� f(a)

�x

= lim
�x!0

[slope of the secant line through (a,f(a)) and (a+�x,f(a+�x))]. (2.1.5)

But as �x ! 0, the secant lines in question approach the tangent line to the graph of f(x) at
the point x = a. See Figure 2.2 below. (The tangent line is the line “just touching” the graph
of f(x) at the point in question. Intuitively, one can think of the tangent line as the “secant line
through (a,f(a)) and (a + �x,f(a + �x)), where �x is infinitesimally small.”) So the slopes of
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these secant lines approach the slope of the tangent line, as �x ! 0. Or in other words, the slope
of this tangent line is the limit, as �x ! 0, of the slopes of these secant lines. So by (2.1.5), the
slope of this tangent line is f

0(a)!

Figure 2.2. As �x shrinks, the secant lines become the tangent line

We summarize:

The instantaneous rate of change, or derivative, f 0(a), equals the slope
of the line tangent to the graph of y = f(x) at the point x = a.

The derivative at a point is the slope of the tangent line at that point

Example 2.1.4. Find the equation of the line tangent to f(x) = x
2 at x = 3.

Solution. This line passes through the point (3,f(3)) = (3,33) = (3,9), and has slope equal to the
derivative f

0(3) of f(x) at x = 3. We saw in Example 2.1.2 that f 0(3) = 6. So, by the initial-value
formula (1.5.1), the tangent line has equation

y = f(3) + f
0(3)(x� 3) = 32 + 6(x� 3) = 9 + 6x� 18 = 6x� 9.
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Part (d) of the above example illustrates a general fact. Suppose we have an arbitrary function
f(x), and an arbitrary point x = a, and suppose f

0(a) exists. Then the line tangent to the graph
of f has slope f

0(a), and passes through the point (a,f(a)). Consequently, by the initial-value
formula (1.5.1), this tangent line has equation

y = f(a) + f
0(a)(x� a). (2.1.6)

Equation of the line tangent to y = f(x) at x = a

Again, this formula makes sense only in situations where f
0(a) exists.

For instance, Example 2.1.3 above tells us that the tangent line to the graph of h(0) = sin(x) at
x = 0 has equation

y = h(0) + h
0(0)(x� 0) = 0 + 0x = x.

-π -1 1 π
x

-1.0

-0.5

0.5

1.0

y

Figure 2.3. The graph of y = sin(x) and its tangent line at x = 0

To summarize the geometry of rates of change: an average rate of change is the slope of a secant

line; an instantaneous rate of change is the slope of a tangent line.

We will often refer to “the slope of y = f(x) at x = a” when we mean “the slope of the line tangent

to y = f(x) at x = a.” Again, this slope is just f
0(a) (when f

0(a) exists). So we think of the
derivative of a function, at a given point, as telling us the slope of that function at that point.

Exercises

1. Let f(x) = 2x2 � 3.

(a) Find the average rate of change �y/�x of f(x) with respect to x, from x = 2 to x = 2+�x,
for each of the following three values of �x: �x = 0.1, �x = 0.01, �x = 0.001.

(b) Based on part (a) above, what might you guess f
0(2) is equal to?

(c) Use algebra to show that the average rate of change of f(x) with respect to x, from x = 2 to
x = 2 +�x, is 8 + 2�x.

(d) Find the instantaneous rate of change of f(x) at x = 2.
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(e) Find the equation of the line tangent to the graph of f(x) at x = 2.

2. Repeat Exercise 1 with the same function f(x), but this time, at x = �1. (That is: for part
(a) of the present exercise, compute average rates of change of f(x) from x = �1 to x = �1+�x,
for the same three values of �x as in Exercise 1(a). And so on.)

3. Let g(x) = �x
3 + 1.

(a) Show that the average rate of change of g(x) with respect to x, from x = 4 to x = 4+�x, is
�48� 12�x� (�x)2. Hint: �(4 +�x)3 = �64� 48�x� 12(�x)2 � (�x)3.

(b) Find g
0(4).

4. Let m and b be constants, and let y = f(x) = mx+ b.

(a) Recalling that the derivative of a function at a point measures the slope of that function at
that point, determine, without any computation, what f

0(a) should be for any real number a.
(Your answer will involve one or more of the constants m and b.) Please explain your answer.

(b) Verify your answer from part (a) using the definition of the derivative. Specifically:

(i) Compute the average rate of change of y = f(x) from x = a to x = a+�x, where a is any
real number and �x is any nonzero number.

(ii) Use your answer from part (i) to evaluate f
0(a).

(c) True or false: for a linear function, average and instantaneous rates of change are always
equal. Please explain your answer.

5. Let D(C) be as in Example 2.1.1 above.

(a) Show that the average rate of change of D with respect to C, over the interval [1,1 +�x], is
0.04896� 0.008�x.

(b) Use part (a) to find D
0(1). Does this result agree (at least to several decimal places) with our

conclusion concerning “the instantaneous rate of change of D with respect to C, at C = 1,” from
part (b) of Example 2.1.1 above?

(c) Show that the average rate of change of D with respect to C, over the interval [2,2 +�x], is
0.03296� 0.008�x.

(d) Use part (c) to find D
0(2). Does this result agree, to several decimal places, with part (b) of

Example 2.1.1 (in the case C = 2)?

6. Let g(x) = cos(x).
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(a) Show that the average rate of change of g(x), from x = ⇡/2 to x = ⇡/2+�x, is � sin(�x)/�x.
Hint: use the trigonometric identity cos(✓ + ⇡/2) = � sin(✓).

(b) Use the definition of the derivative to find g
0(⇡/2). Hint: use the “trigonometric limit” (2.1.4)

above.

7. Let f(x) =
p
x.

(a) Show that the average rate of change of f(x) with respect to x, from x = 64 to x = 64+�x,
is p

64 +�x� 8

�x
.

(b) Multiply the numerator and denominator of your answer from part (a) by
p
64 +�x+8, and

then do some algebra to simplify, to show that the average rate of change from part (a) equals

1p
64 +�x+ 8

.

(c) Use your result from part (b) to show that f
0(64) = 1/16.
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