Taylor series representation of functions.

Todays BIG question:

How, when, where can we say that the Taylor/ Maclaurin serves

$$T(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k$$

=
$$\frac{f(a)}{0!} + \frac{f'(a)}{(x-a)} + \frac{f''(a)}{(x-a)} + \dots + \frac{f^{(k)}(a)}{(x-a)} + \dots + \frac{f^{(k)}(a)}{(x-a)} + \dots$$

equals - that is, converges to - the function f(x)??

- "That is: what tools/techniques do we have?
- (2) That is: under what general conditions?
- That is: for which values of x?

SOME ANSWERS:

A) Theorem: Taylor Scries Remainder Theorem.

Suppose f(K) (a) exists for all k = 0, 1, 2, ... Let Rn(x) denote the difference between f(x) and its n the degree Taylor polynomial. That is,

$$f(x) = T_n(x) + R_n(x) = \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x-a)^k + R_n(x).$$
 (*)

Then the following are true.

(i) If
$$\lim_{n\to\infty} R_n(x) = 0$$
, then $f(x) = \frac{1}{2} \cos x$, its

Taylor scries:
$$f(x) = \sum_{k=0}^{\infty} \frac{f(k)}{a} (x-a).$$

$$k=0 \quad k!$$
(In particular, the Taylor scries converges.)

$$|f^{(n+1)}(x)| \leq M$$
 for $|x-a| \leq Q_i^*$

where M and I are positive numbers. Then

$$/R_n(x)/\leq \frac{M|x-a|^{n+1}}{(n+1)!}$$
 for $|x-a|\leq Q$.

* We can replace for 1x-al = d" with "for all x."

(Proof omitted.)

The essence of the theorem is this:

PART (i):

To show f(x) equals its taylor series, it suffices to show that the remainder $R_n(x)$ goes to zero as $n \to \infty$.

PART (ii):

If we can bound $f^{(n+i)}(x)$ on the interval where $|x-a| \le d$, then we get a bound for $R_n(x)$ there. If this bound is good enough, we can deduce that $R_n(x) \to 0$ as $n \to \infty$ on this interval, so by PART (i), f(x) equals its Taylor series there.

(1) Show that the Madairin series T(x) for sinx at x=0:

$$T(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+l)!} x^{2k+l}$$

converges to sinx for all x.

Solution. First, we need a good bound on $f^{(n+1)}(x)$.

But clearly, $f^{(n+1)}(x) = \pm \sin x \text{ or } \pm \cos x,$ depending on n. In any case,

 $|f^{(n+1)}(x)| \leq 1$, for all x.

$$|T (x)| = I_{j} \text{ for } \underline{a} \cdot \mathbf{II} x$$

So by Taylor's inequality,

$$R_n(x) \leq \frac{|x|}{(n+1)!}$$
 for all x.

But $\lim_{n\to\infty} \frac{|x|^{n+1}}{(n+1)!} = 0$ for all x. So by our

Factorials grow gaster than powers Theorem (PART (i)),

$$5In \times = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} \times \frac{2k+1}{2k+1}$$

NOTE: PART (ii) of our theorem also has an application to estimation.

Example D. -1/2,
Approximate (3.9) using a third degree
Taylor polynomial T3(x) for

$$f(x) = \frac{1}{\sqrt{5-x}}$$
 at $x=1$.

At most how far off is your estimate?

Solution. We saw last time that

$$T_3(x) = \frac{1}{2} + \frac{1}{16}(x-1) + \frac{3}{256}(x-1) + \frac{5}{2048}(x-1)^3$$

Now $(3.9)^{-1/2} = \frac{1}{\sqrt{5-(1.1)}} = f(1.1)$, which is approximately

 $T_3(1.1) = (we did this last time) = 0.50636962890...$

To estimate the remainder $R_3(1.1)$, we need to estimate $f^{(4)}(x)$, for 1x-1/=0.1.

Now $f^{(4)}(x) = \frac{105}{16(5-x)^{9/2}}$ (0/4).

The largest this can be, for $|x-1| \le 0.1$ is when 5-x 15 smallest, meaning x is largest, meaning x = 1.1.

50 $|f^{(4)}(x)| \leq 105 \leq 0.0143641.$ $16(5-(1.1))^{9/2}$

So by Taylor's inequality,

R3(1.1) = 0.0143641 ./1.1-1/ = 6.670×10.8

So our estimate is at most this far off. (Note: a calculator gives (3.9) = 0.5063968354.

which differs from our estimate T3 (1.1) by about 5.4×10-8.)