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6.2 Statistical inference

Please note that this section is in “DIY” (Do It Yourself) format: there are various blanks to be
filled in, and questions to be answered, along the way, rather than being left to a set of exercises
at the end.

A. Random variables and pdf’s

Let X be a random variable, meaning, essentially, a way of assigning a real number to each possible
outcome of an experiment. We say that X has probability density function, or pdf, given by f(z)
if ,

Pla <z <b) :/ f(z)dx

for any numbers a and b in the domain (set of possible values) of X. (Again, P(a < x < b)
denotes the probability that, if a value x is chosen from X at random, that value will lie between
the numbers a and b.)

Exercise Al. Fill in the blanks: the mean p and standard deviation ¢ of a pdf f(x) can
be obtained as follows. Draw a relative frequency histogram corresponding to
a sample of points from X. Compute the T and the
s of the histogram data. Repeat for larger and larger samples, using narrower and narrower bin
widths. Then the tops of the bars of the histogram will smooth out to give you the graph of
your pdf y = , and your numbers T and s will converge to and ,
respectively.

Also recall that, for any pdf f(z), with domain (¢,d), we must have

e f(x) >0 for all z in (c,d) (since probabilities can’t be negative), and



282 CHAPTER 6. PROBABILITY AND STATISTICS

. fcd f(z)dx =1 (since the probability that a data point in X lies somewhere in X must equal
100%, or 1).

e Pla<z<b) =Pla<z<b) =Pla<z<b) =Pla<az<b) forall aand b in (c,d)
(probabilities are the same whether or not you include endpoints, since the area under a
single point on the graph of a function is zero).

Remark. Often, the domain (c,d) of a pdf will be taken to be of infinite extent, meaning ¢ = —oo
or d = +00, or both.

Exercise A2. Consider the following probability density function for a random variable X. The
regions delineated by dashed lines have areas as shown.

Find:

(a) P(X < -8).
(b) P(10 < X < 17).

(¢) The number ¢ such that 36% of all data values of X are at least 6 and at most c.

B. Standard normal random variables and pdf’s

A random variable X is said to have a standard normal distribution if the pdf for X is given by

—x2/2

f0,1($) =

1
e
V2T

(where x can be any real number).
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For such an X, we say “X is N(0,1).” In other words, to say X is N(0,1) is to say that, for any
real numbers a, b with a < b,

b 1 b
P(a<x<b):/ for(x)de = — [ e /?dz.
a 7 V2T Ja

FACT: The pdf fo1(z) has mean ¢ = 0 and standard deviation ¢ = 1. (That’s why we call it
foa(x).)
Exercise B1. Fill in the blanks:

a) It can be computed that f 01(x)dr =~ 0.683. In other words: if X is N(0,1), then about
1 3
% of the values of X lie within one of the mean.

(b) It can be computed that fi foi(x)dx ~ 0.955. In other words: if X is N(0,1), then about
% of the values of X lie within standard deviations of the mean.

(c) It can be computed that ff’g foi(x)dx ~ 0.997. In other words: if X is N(0,1), then about

% of the values of X lie within three of the mean.

(d) It can be computed that fjfgﬁ foi(x)dx =~ 0.950. In other words: if X is N(0,1), then about
% of the values of X lie within standard deviations of the mean.

(e) It can be computed that f_223§3 fo1(z) dzr ~ 0.980. In other words: if X is N(0,1), then about
% of the values of X lie within standard deviations of the mean.

(f) It can be computed that f_225g$6 foi(x)dr = 0.990. In other words: if X is N(0,1), then

about % of the values of X lie within standard deviations of the
mean.

C. Other normal random variables and pdf’s

If the pdf for a random variable Z follows the basic shape of the standard normal curve, but has
mean /4 (instead of 0) and standard deviation o (instead of 1), we say “Z is N(u,0).” Let’s denote
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such a pdf by f,,(x). Then: to say Z is N(u,0) is to say that, for any real numbers a, b with
a<b,

b
Pla<z<b) = / fuo(x)de.
The precise formula for f, ,(x) is

L wwree)

o\ 2w

But we won’t need this formula, because we are going to translate N(u,0) variables to N(0,1)
variables, shortly.

fuo(x) =

A ‘\

Exercise C1. Recall that the mean of a data set measures the “central tendency,” and that
the standard deviation measures the “spread” (large standard deviation means large spread, and
conversely). Given all this, and also assuming that the solid curve on the graph above is N(0,1),
identify, on the above graph, which of the dashed curves is N(1.5,1); which is N(1,1.5); which is
N(1.5,0.5); which is N(—1,1.5); and which is N(—1,0.5). Please explain your reasoning briefly, in
the space below.
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D. Translation between N (0,1) variables and N (u,0) variables

We have the following NISNID (“Normal Is Standard Normal In Disguise”) Fact, which we present
without proof (but which is not hard to show, using the above formula for the N (o) pdf f, ,(x)):

NISNID Fact. If Z is N(u,0), then = is N(0,1).

In stats texts, you will typically find tables of N(0,1) variables, but not other N(u,o) variables.
Now we know why: we can compute probabilities associated with N(u,0) random variables if all
we know are probabilities associated with N(0,1) random variables.

Here’s an example showing how.
Example. Suppose Z is N(8,1.5). Find P(5 < z < 11).

Solution. Since, in this case, p = 8 and o = 1.5, we have

5—38 -8 11-28
P(5<z<11):P( : )

1.5 < 1.5 < 1.5
z—8
=P -2<——< 2| =0.955.
( 1.5 )

The last step is by the NISNID Fact, and by exercise B1(b) above. Using the strategy of the
above example (and using part B above where necessary), complete the following exercises.

Exercise D1. Suppose Z is N(—2,0.3). Find P(—2.3 < z < —1.7).

Exercise D2. Suppose Z is N(2,2). Find P(—1.92 < z < 5.92).
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Exercise D3. Suppose Z is N(u,0). Find P(u — 30 < z < u+ 30).

Exercise D4. What exercise D3 directly above says is: if Z is any normal random variable, then
% of the data lies within three standard of the

E. The sampling distribution of the mean

Consider a dataset of scores on the ALEKS exam taken by 1,399 CU students, at the start of the
Fall 2010 semester. Here’s a histogram for the data (with a normal curve fit to the data as well
as possible):

ALEKS exam scores, Fall 2010
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Note that the data is not especially bell-shaped (well, it’s kind of like a “skewed” bell). But
now, let’s do something a bit different. Let’s choose a random sample of 30 ALEKS scores
x1,T9,T3,...,230 out of the 1,399, and compute the mean T = (z1 + x5 + 3 + -+ + x30)/30.
Actually, let’s do this many, many times, to get a whole bunch of sample means T (all correspond-
ing to the same sample size n = 30). Here is a histogram (and a best-fit normal curve) for a large
set of sample means that we obtained in this way (with the help of Mathematica).
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Sample means (n=30) of above scores

Fzrg lf_ency
1505- (\
1005-
50}
Il
20 20 : 6'0l 80 100 1ean

Exercise E1. Fill in the blanks: the mean of the above set of 1,399 ALEKS exams scores looks

like it’s roughly to the mean of the above set of sample means. (Both numbers look
like they’re somewhere around 57 or so.) However, the standard deviation of the sample means
dataset looks much than that of the original dataset, because the sample means
seem much spread out (that is, they seem tightly clustered about the

central value).

Also, even though the original ALEKS data is only very roughly normal in shape, the mean score
data fits a curve more closely.

The above observations exemplify the following theorem, which is called The Sampling Distribu-
tion of the Mean, or SDM. This result follows from the Central Limit Theorem, and is critical to
“hypothesis testing” and “confidence intervals” (which we’ll study in the remainder of this assign-
ment).

Theorem (The Sampling Distribution of the Mean, or SDM). Let X be a (not necessarily
normal) random variable, with mean p and standard deviation o. Fix a sample size n, and assume
n is at least 30. Then the random variable X consisting of means T of all possible random samples
of X, of size n, IS roughly normal, with mean 7 = p and standard deviation @ = o/y/n. That is,

for such X, X is roughly N (5, ) = N(u,0//n).

Exercise E2. Our original “random variable” X of ALEKS scores data has mean p = 56.81 and
standard deviation o = 22.47. Based on the above Theorem, what are the mean 7z and standard
deviation @ of the set X of all possible sample means of ALEKS scores (for samples of size n = 30)7
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Remark. There are roughly 6.52941 - 10% possible samples of size 30 from a set of size 1,399.
We couldn’t possibly compute the mean for every one of these samples! (Unless, for example, we
were to start at the beginning of the universe, and compute a billion billion sample means every
billionth of a billionth of a second. If we did that a hundred million times, we’d get relatively
close. But let’s not.)

For the above histogram of sample means, we computed considerably fewer means — about 1000,
in fact. A thousand is a lot smaller than 6.52941 - 105!, but it’s large enough to give us a good
qualitative idea of what’s going on.

F. Hypothesis testing of a population mean

OK, here’s the BIG IDEA. Suppose we have some population, represented by a random variable X.
Suppose that, in the absence of any compelling evidence to the contrary, we are willing to accept
that the mean p of X is (more or less) equal to some known, specified number py. The question
is: what, mathematically speaking, might constitute “compelling evidence to the contrary"?

FOR EXAMPLE: Suppose we know, because of a long history of experimentation and practice,
that the average lifespan of a rat is 684 days. Suppose we now administer a restricted diet to a
group of 105 rats. Let’s assume (although such things are almost never really true in practice)
that these 105 rats represent a random sample of the population of all rats who could conceivably
receive this restricted diet.

Exercise F1. Fill in the blanks: the burden of proof is on us to show that the restricted diet
has any pronounced effect compared to an unrestricted diet. So, until proven otherwise, we assume
that the two diets are essentially the same. That is, we're assuming that the mean p of survival
times X of the population of all rats getting the restricted diet is given by yu = (in
days) (your answer should be a number).

Suppose this assumption is true. Suppose we also know, somehow, that our survival times X for
all rats on the restricted diet have standard deviation o = 286. (Remark: in practice, you will
almost never know the population standard deviation o directly; if you did, then most likely, you’d
know the mean p as well, and you wouldn’t have to hypothesize about it, and you’d be done. So
in practice, one often lets the standard deviation s of the sample stand in for ¢. In fact, that’s
what we’ve done here.) Then we know, by the SDM Theorem from part E above, and the fact
that our sample size n = 105 is at least 30, that the random variable X of sample means from this
population, for samples of size 105, will have a pdf, with mean

n=p= (fill in a number)

and standard deviation

=0 = in the correct numbers for o and n
/ \/_ (ﬁll h b f d )
= (compute 7).

X R is

But then we know, by the NISNID Fact of part D above, that the random variable
o
standard normal — that is, this variable is N( : ). This tells us, by part (f) of
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X-7

o

exercise B1 above, that 99% of all possible values of the random variable fall between the

numbers and

In particular, suppose we actually compute a sample mean T from a sample of X, of size n = 105,
and find that ‘ — o is not between the above two numbers. Well, by the above paragraph, this
is pretty unlikel}(fj, if it’s really true that p = 684. SO, in such a situation, we might conclude
that p is not equal to 684. That is: in this particular case, we would reject the “null hypothesis”
Hy : = 684, and accept the “alternative hypothesis” H4 : u # 684, meaning we’d accept the
conclusion that the restricted diet leads to substantially different results than the unrestricted
diet. Also, we'd say that we accepted this alternative hypothesis “at the 99% level.” What this

means is: there’s at most a 1% chance (1%=100%-99%) that we’d get sample data this far away
from the hypothesized mean, if this hypothesized mean of 684 really were the true mean.

Let’s wrap this up with a particular case study (actual data collected from a 1988 experiment). In
this study, the mean lifespan, in days, of a group of 105 rats given the restricted diet was ¥ = 968.
The standard deviation s was 286, as alluded to above. Question: is this enough for us to accept,
at the 99% level, the alternative hypothesis that the restricted diet yields lifespans significantly
different from those of the unrestricted diet? To answer:

Exercise F2. Compute v : a

, for this particular value of * and for the 7 and & computed in

exercise F'1 above.

Exercise F3. Is the number you computed in exercise F2 above between —2.576 and 2.5767
Based on your answer to this, do we reject the null hypothesis Hy : ;1 = 684, and accept the
alternative hypothesis H, : u # 684, at the 99% level? Or do we not reject the null hypothesis?
Please explain.
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Exercise F4. In general (that is, considering again any general population, not necessarily that
of exercises F1-F3 above), how would your test change if you wanted to test the null hypothesis
at the 95% level, or the 98% level, instead of the 99% level? Hint: you only need to change the
numbers you're comparing things to in exercise F3 above.

Exercise F5. Back to our rats: Based on your answer to exercise F4 above, do we reject the
above null hypothesis Hy : ;1 = 684, and accept the alternative hypothesis H4 : 1 # 684, at the
95% level? At the 98% level? Please explain.

G. Confidence intervals for a population mean

In Section F above, we considered the question: Is the mean p of a certain random variable X
equal to a certain, given, “hypothesized” number u? (Or, perhaps more accurately: is there
enough evidence to conclude that p is not equal to p?) In this section we ask a slightly different
— and, some would say, more plausible and useful — question, namely: within what range of values
can we say, with a reasonable degree of confidence, a certain population mean lies? In other words,
we investigate how, based on sample data, we can say things like “We are 95% confident that the
mean g of our population lies between this number and that number.”

The procedure for arriving at such statements is relatively straightforward. It consists of five
steps, as delineated below. Please note: we are going to assume, in outlining these steps, a “95%
confidence level.” We'll explain what this means, and will consider how to proceed for different
confidence levels, a bit later.
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Exercise G1: fill in the blanks.

STEP 1. Take a sample of values of X, with sample size n, where n is at least 30. Compute the
mean and s of this sample.

STEP 2. We know, from the SDM Theorem of section E above, that the sample means X are
N(f,7), so that, by the NISNID Fact of section D above,

X-7
g

is N( )

Therefore, a randomly chosen sample mean T satisfies (by exercise B1(d) above):

g

P<—1.96 < TTH 1.96) =

If we multiply everything in parentheses through by &, and then subtract = from all terms in
parentheses, we get

P(—E —-197 < —u< -7+ 1.966) =0.95 = 95%.

Multiplying everything in parentheses by —1 (and remembering that mutliplying by a negative
number switches the direction of an inequality), we get

P(f+ 1.965 >0 >7 — 1.966) =0.95 = 95%.

Finally, just reverse the order in which the stuff in parentheses is written, to get

P(f—1.966<ﬁ<f+ 1.966) = . ()
STEP 3. Now recall, from the SDM, the formulas for 7z and & in terms of i, o, and n:

= and 7=

So equation () can be rewritten:

P(f—1.96%<u<f+1.96%): . (%)
Or in other words: there is a % chance that, if a mean T is computed from a random

o

sample of size n, then p will lie between T — 1.96 T and T+
n

STEP 4. Now as discussed in part F above, we typically don’t know the population standard

deviation o, so we approximate it with s, which is the sample . Then

equation (xx) reads:
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s s
Pz —-196 — T+1.96— |~
<x 96\/ﬁ<,u<x+ 96\/ﬁ>

STEP 5. Because of the reasoning outlined above, we call the interval

S S
z—196 —.7+1.96 —
(I vt ﬁ)

a 95% confidence interval for the population mean .

Exercise G2. Here are the “navel ratios,” meaning the ratios

height
VUD

(VUD stands for “vertical umbilical displacement,” or belly-button height) of a random (well, not
really random, but let’s pretend) sample of 48 CU students.

1.60 [ 1.60 | 1.56 | 1.63 | 1.62 | 1.63 | 1.65 | 1.65 | 1.65 | 1.67 | 1.68 | 1.63
1.60 | 1.66 | 1.59 | 1.64 | 1.61 | 1.65 | 1.62 | 1.64 | 1.67 | 1.56 | 1.58 | 1.58
1.58 [ 1.70 | 1.59 | 1.61 | 1.67 | 1.63 | 1.58 | 1.7 | 1.67 | 1.66 | 1.67 | 1.63
1.68 1 1.59 | 1.55 | 1.54 | 1.60 | 1.60 | 1.66 | 1.58 | 1.66 | 1.66 | 1.65 | 1.61

(a) Find the mean T and standard deviation s of the above navel ratio data. Write your answers
to three decimal places.
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(b) Use the information from part (a) above to construct a 95% confidence interval for the mean
navel ratio p of all CU students.

Exercise G3. In general (that is, considering again any general population, not necessarily that
of exercise G2 above), suppose you wanted, instead of the 95% interval of STEP 5 above, a 98%
confidence interval. How would the interval described in STEP 5 above change? In other words,
what would a 98% confidence interval for i look like, in terms of 7, s, and n? What about a 99%
confidence interval? Please explain. Hint: consider exercises B5 and B6 above.
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Exercise G4. Construct 98% and 99% confidence intervals for the mean navel ratio p of all CU
students.

Exercise G5. Using the sample data from part F above, construct 95%, 98%, and 99% confidence
intervals for the mean survival time u of rats fed the restricted diet described there.
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Exercise G6. One theory says that, on average, in many populations, the “navel ratio” studied
in the above exercises is about equal to the “golden ratio,” which equals (1 +/5)/2 ~ 1.618.

Test this theory, at the 99% level, for the population of all CU students, using the above navel
ratio data. Use the procedure outlined in part F of this section. Make sure to state clearly your
null and alternative hypotheses.
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