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3.6 Modeling other phenomena

In this section, we consider various other systems that can be modeled using initial value problems.

Throughout, our emphasis will be on how assumptions about the behavior of a system can be
translated into equations describing rates of change. And we will take an analytic, “term-by-term”
approach. In other words we will endeavor, where possible, to demonstrate how each assumption
corresponds to one or more terms in one or more of the rate equations involved.

We will certainly also give some justification for, or explanation of, each of the assumptions. Still,
our focus will be less on debating the validity of the assumptions themselves than it will be on
accepting a given set of assumptions and deriving a mathematical model from it. (This is not to
say that careful analysis of the assumptions is not important. It is important – it’s essential – in
science. But it’s not our focus.)

Circadian rhythms

“Circadian” means “occurring naturally on a 24-hour cycle.”

In 2017, US scientists Jeffrey Hall, Michael Rosbash, and Michael Young received the Nobel Prize
in Physiology or Medicine, for their discoveries concerning circadian rhythms. Central to their
work was analysis of two genes – a “period” gene and a “timeless” gene – and of the proteins
expressed by these genes. (The work of Michael Young also concerned a third gene, which he
named the “doubletime” gene. For simplicity, though, we will study only the first two genes.)

Here we consider some earlier studies that laid some of the groundwork for the Nobel-Prize-winning
research. In particular, we reference the article “A Simple Model of Circadian Rhythms Based on
Dimerization and Proteolysis of PER and TIM,” by John J. Tyson, Christian I. Hong, C. Dennis
Thron, and Bela Novak, in Biophysical Journal, Volume 77, November 1999, pages 241–2417. We
focus especially on the differential equations developed in this article to model circadian rhythms.

According to this article, “body clocks” (in fruit flies) are regulated by the feedback of two proteins,
PER – short for “periodic” – and TIM– short for “timeless” – on the “per” and “tim” mRNA
(messenger RNA) that express these proteins.

This feedback loop may be expressed in terms of three basic variables:

• the concentration of per and tim mRNA (taken together), denoted by M ;

• the concentration P1 of PER and TIM monomers. A monomer is a basic building block of
proteins.

• the concentration P2 of PER and TIM dimers. A dimer is two monomers joined together.

Remark 3.6.1. Here we have followed the authors’ practice in grouping together the per and tim
mRNA, as well as the PER and TIM monomers and the PER and TIM dimers. As the authors
note, one could alternatively separate per from tim, and PER from TIM, resulting in a system of
six separate variables and a corresponding system of six differential equations. But the authors
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argue that “Such a complicated set of equations would not effectively illustrate the importance of
positive feedback in the reaction mechanism.” In other words, many salient results can be obtained
by considering only the variables M , P1, and P2 described above.

The authors’ model results in a system of differential equations that we will present first, and then
explain, in terms of the assumptions behind the model. The system, which we denote by (CR)
(for “Circadian Rhythms”), is:
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The Circadian Rhythm (CR) system of differential equations

Here, the letters a,b,c,d,e,f,g,h,k,` all indicate positive parameters.

Notice that we have marked each term, in the above system of equations, with a lower-case roman
numeral. We now explain the implications of each of these terms.

(i) This term indicates that mRNA is degraded, or used up, at a rate proportional to the amount
of mRNA present.

(ii) This term indicates the fact that P2 inhibits growth of M . Indeed, as P2 increases, the
denominator 1 + bP

2
2 increases, so that the term a/(1 + bP

2
2 ) decreases. And since this term

contributes to dM/dt, the ultimate effect of an increase in P2 is a decrease in dM/dt, and
therefore a slowing down, or inhibition, of the growth of M .
Note that the term (ii) involves the square of P2, rather than P2 to the first power. The exponent
2 here is called the “Hill coefficient,” and measures certain biochemical binding properties of
the molecules involved.
A larger Hill coefficient indicates a greater rate of inhibition. This is because, the larger the
exponent h, the faster P h

2 grows as a function of P2. So a larger h means a smaller a/(1+ bP
h

2 ),
and therefore a smaller contribution of this term to dM/dt.
We also note that the “1” in the denominator of term (ii) prevents the possibility of division by
zero: if the denominator of (i) were simply bP

2
2 , or P

2
2 , then this denominator would be zero

whenever P2 is zero. But as long as P2 is nonnegative (and a negative concentration does not
make sense), then 1 + bP

2
2 > 0.
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(iii) This term indicates that PER/TIM monomers are expressed by per/tim mRNA at a rate
proportional to the amount of mRNA present.

(iv) and (viii) These are the most complicated terms. They represent a phenomenon known as
phosphorylation. This is a process whereby both monomers and dimers combine with phos-
phates and, through this combination, are deactivated.

To understand what these terms are indicating, let’s consider their numerators and denomina-
tors separately. Were the denominator in term (iv) not present – that is, were term (iv) simply
to equal �eP1 – then this term would be telling us that monomers are deactivated at a rate
proportional to the amount of monomers present. Similarly, without the denominator, term
(viii) would imply that the rate of dimer deactivation is proportional to the amount of dimers
present. Such behavior on its own would make sense much in the way that radioactive decay
makes sense: if a substance decays, or “goes away,” at a certain rate per unit of that substance,
then the more of that substance is present, the more of that substance will “go away” in a given
amount of time.

However, the situation here is more complicated than that of radioactive decay: it turns out
that, at the same time, protein monomers and dimers inhibit their own decay. This inhibitive
effect is captured by the denominators f + P1 + gP2 in terms (iv) and (viii). (Again, these
denominators get larger as P1 or P2 does.)

(v) and (ix) These terms represent a process known as proteolysis, which is a simpler type of
degradation of proteins.

(vi) and (x) These terms represent “dimerization,” or the combination of two monomers to form
a dimer.

Observe that term (vi) has coefficient �2k, whereas (x) has coefficient +k. This can be ex-
plained as follows:

(a) The coefficient of (vi) is negative, while that of (x) is positive, because dimerization means
we are losing monomers and gaining dimers.

(b) Term (vi) involves a “2k,” while term (x) involves only a single “k,” because for every
dimer gained, two monomers are lost.

Also observe that, in (vi) and (x), the variable P1 occurs to the second power. This is be-
cause a dimer results from the combination of a monomer with another monomer, so the rate
at which dimerization occurs is proportional to the number of possible monomer-to-monomer
interactions. But the number of such interactions is itself proportional to M

2. (Think of it this
way: If there are M people in a room, then there are roughly M

2 possible handshakes that can
happen, since every one of the M people can shake hands with any of one M others. Actually
there are M(M � 1) possible handshakes, if one excludes handshakes with oneself. But M

2

and M(M � 1) are “commensurate:” they differ by M , which is small compared to M
2 if M is

large.)
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(vii) and (xi) represent the process where a dimer splits into monomers. Through this process,
each dimer lost results in two dimers gained, and this explains the “+2`” in term (vii) versus
the “�`” in term (xi).
Note that, in (vii) and (xi), the variable P2 appears only to the first power: a dimer does not
have to interact with another to split into monomers, so the number of possible dimer splits is
only proportional to P2, not to P

2
2 . Contrast this with the analysis of terms (vi) and (x) above.

One nice feature of the above model is that it allows us to see quite clearly how certain natural
aberrations can affect circadian rhythms.

To illustrate this most simply, it will be helpful first to combine monomers and dimers into a single
variable P (for “proteins”). As the authors of the paper show, we can, under certain “equilibrium”
conditions, then also combine the above differential equations defining dP1/dt and dP2/dt into
a single equation for dP/dt. We skip the mathematical details here – they are not completely
beyond the scope of this book, but are a bit messy. (These details may be found in the original
article.)

The result of this combination is a system of two differential equations, one for mRNA M and one
for proteins P . Specifying known “normal” values for the parameters in question, we may then
create plots of P and M together, using a variant of our program SIR.sws. The resulting graph
looks like this.

Figure 3.8. Circadian rhythms under “normal” conditions:

mRNA (in purple) and protein (in green)
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Note that the phenomena represented by above graph are circadian: the graphs of both M and
P repeat themselves every 24 hours. (Actually, the period of these graphs turns out to be closer
to 24.2 hours, reflective of the fact that, in nature, circadian rhythms are often not precisely
circadian, even under “normal” conditions.)

But now we consider an anomalous situation. It’s known that a certain mutation, denoted perL,
of per mRNA causes a change in the “dimerization rate.” By the latter, we mean the parameter k
that appears in terms (vi) and (x) above, and that governs the rate at which monomers combine
to form dimers. Graphing M and P with a value of k that corresponds to this mutation then
yields a result like the following.

Figure 3.9. Circadian rhythms under “mutant” conditions:

mRNA (in purple) and protein (in green)

The phenomena represented by this graph are quite far from circadian!

We have endeavored to understand the system (CR) by studying each term in the right-hand sides
of the differential equations there. In our analysis of these terms, we have encountered a variety
of important notions, some of these notions we’ve seen previously:

• Notions of growth and decay, generally indicated by “plus” and “minus” signs, respectively.

The convention that all parameters be positive, as imposed above, helps us insure that plus and
minus signs do, in fact, indicate growth and decay, respectively. For example: since M must
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always be nonnegative, requiring that c be positive means that we immediately recognize the
term �cM (cf. term (i) above) as representative of decay, rather than growth.

We have seen this convention previously, in our discussions of exponential growth and decay
in Section 3.1. There, we stipulated that the parameter k, which represented a growth rate or
a decay rate depending on the situation, always be positive. Such a requirement allows us to
immediately recognize the equation P

0 = kP as representative of a growth situation, and the
equation P

0 = �kP as representative of a decay situation (since the quantity P in question
generally does not assume negative values).

• The notion of proportionality, where a term in the differential equation for one quantity equals
a constant times that quantity, or times some other quantity;

• The notion of inhibition of one quantity on the growth of another, generally reflected by the
former quantity appearing in the denominator of a term in the differential equation for the
latter;

• The notion of exchange, where the transformation of certain quantities into others is reflected
by “matching” terms in the differential equations for the quantities involved. (Those terms don’t
necessarily cancel per se. For example: again, since one dimer can become two monomers, the
above term (vii) cancels against twice the term (xi).)

• The notion of combinatorics, where we count the number of interactions of a certain type, and
this count determines the exponents of the variables in the corresponding terms of the differential
equations. (See, again, the analysis of terms (vi) and (x), and terms (vi) and (x), above.)

Many of these notions arise frequently in the modeling of phenomena by differential equations.

Neural impulses

There are many mathematical models for action potential, meaning a rapid rise and fall – a “spike”
– in voltage across a cell membrane. Here we consider the seminal model developed by Sir Alan
Hodgkin and Sir Andrew Huxley in the 1940’s. This model was the first to exhibit truly predictive
power, and laid the groundwork for a vast amount of subsequent research on neural impulses.
For their work, Hodgkin and Huxley received the 1963 Nobel Prize in Physiology and Medicine
(shared with Sir John Eccles, for his work on transmission across a synapse). Throughout this
subsection, we will use lowercase letters to represent parameters (always assumed positive), as well
as the independent variable t; dependent variables will be denoted by upper-case letters.

We begin our analysis by considering several fundamental quantities: charge Q, capacitance c,
which is a measure of charge storage capacity across a cell membrane, and voltage V , which
measures the amount of work required to move a charge against an electric field. These three
quantities are related by the basic equation

Q = cV. (3.6.1)
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Next, current I is defined as the rate of change of charge, with respect to time: I =
dQ

dt
or, by

equation (3.6.1),

I =
d

dt
[cV ] = c

dV

dt
. (3.6.2)

In the Hodgkin-Huxley model, I comprises four components:

I = IE � INa � IK � IL, (3.6.3)

where:

• IE represents an externally applied current;

• INa represents sodium ion current flowing through sodium channels in the cell membrane;

• IK represents potassium ion current flowing through potassium channels in the cell membrane;

• IL represents “leakage” current (coming mostly from chloride ions), due to natural permeability
of the cell membrane.

So we can rewrite equation (3.6.2):

c
dV

dt
= IE � INa � IK � IL. (3.6.4)

Let’s now look more closely at each of the four terms on the right-hand side of equation (3.6.4).

(A): IE. The externally applied current is assumed to be known (and is often constant or zero).

(B): INa. By Ohm’s Law, we know that

INa = GNa(V � eNa). (3.6.5)

Here, GNa is conductance of the sodium channels (a measure of “compliance” of these channels
to current flow), and eNa is the “equilibrium potential” for these channels. (By equation (3.6.5),
eNa is the voltage that makes INa equal to zero.)
To better understand equation (3.6.5), let’s study GNa more closely.
Each particular sodium channel comprises four so-called “gates,” which are possible avenues for
the passage of sodium ions. These gates are of two types. Three of these gates are known as
“activation gates,” and all three activation gates have the same probability, call it M , of being
open, and allowing sodium ions through. The fourth gate is an “inactivation gate,” and this
fourth gate has a different probability, call it H, of letting sodium ions through. An important
point to make here is that M and H are variables; they change with time.
Because of the way probabilities work, this means that the probability of sodium ions following
through all four gates of any given sodium channel is M

3
H. But there are many sodium

channels. Let gNa denote the maximum possible conductance, meaning conductance when all
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gates in all sodium channels are open. We can conclude that the actual conductuance GNa

then satisfies the equation
GNa = gNaM

3
H. (3.6.6)

Combining equations (3.6.5) and (3.6.6) yields the equation

INa = gNaM
3
H(V � eNa). (3.6.7)

(C): IK. The analysis of IK is similar to that of INa. But it’s simpler, because all four potassium
ion gates are of the same type. Let’s denote each gate’s “permissivity probability,” or probability
of being open, by N – which, like M and H above, is a function of time. Then by arguments
like those in part (B) above,

IK = gKN
4(V � eK), (3.6.8)

where eK is the equilibrium potential for the potassium channels, and gK is the maximum
possible conductance of these channels, meaning the conductance that would result were all
gates in all potassium channels open.

(D): IL. The analysis here is even simpler, because the maximum possible conductance due to
leakage turns out to be a constant, call it gL. So

IL = gL(V � eL), (3.6.9)

where eL is the equilibrium potential for leakage current.

We now put equations (3.6.7), (3.6.8), and (3.6.9) into equation (3.6.4), to get

c
dV

dt
= IE � gNaM

3
H(V � eNa)� gKN

4(V � eK)� gL(V � eL). (3.6.10)

The quantities M , H, V , and N are the dependent variables here. And (3.6.10) is, of course,
an equation for dV/dt. To complete our model, then, we’d like to develop equations for dM/dt,
dH/dt, and dN/dt.

We first consider H, the probability of a sodium ion gate being permissive (allowing the flow of
sodium ions). Such a gate has probability 1 � H of being impermissive. Now suppose we know
that such a gate transitions from the permissive state to the impermissive state at the rate AH ,
and transitions in the reverse direction (from impermissivity to permissivity) at the rate BH . We
can conclude that

dH

dt
= AHH +BH(1�H). (3.6.11)

Similarly,
dM

dt
= AMM +BM(1�M) (3.6.12)

and
dN

dt
= ANH +BH(1�H). (3.6.13)
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Equations (3.6.10), (3.6.11), (3.6.12), and (3.6.13) are the differential equations of the Hodgkin-
Huxley model. For clarity, we present them all together, here:

c
dV

dt
= IE � gNaM

3
H(V � eNa)� gKN

4(V � eK)� gL(V � eL)

dH

dt
= AHH +BH(1�H) (HH)

dM

dt
= AMM +BM(1�M)

dN

dt
= ANN +BN(1�N)

The Hodgkin-Huxley (HH) system of differential equations

The above system entails a number of parameters: gNa, eNa, gK , eK , gL, and eL. But note also
that there are a number of dependent variables appearing on the right-hand sides of these equa-
tions, beyond the ones appearing on the left-hand sides. Specifically, there are the variables
IE,AH , BH , AM ,BM ,AN , and BN . To make equations (HH) into a viable system – one that we
could, for example, solve using Euler’s method (together with a set of given initial conditions), we
would need to know more about these variables. It’s already been noted that IE will, generally
(at least in our present model), be known or specified. Further, relatively simple formulas for
the functions AH , BH , AM ,BM ,AN , and BN , in terms of the voltage V , can also be given, based
on experimentation and various assumptions. See, for example, the chapter “Electrophysiological
Models,” by M. E. Nelson, in the text Databasing the Brain: From Data to Knowledge (S. Koslow
and S. Subramaniam, eds.), Wiley, New York (2004).

Exercises

Part 1: Fermentation

Wine is made by yeast; yeast digests the sugars in grape juice and produces alcohol as a waste
product. This process is called fermentation. The alcohol is toxic to the yeast, though, and the
yeast is eventually killed by the alcohol. This stops fermentation, and the liquid has become wine,
with about 8–12% alcohol.

The following exercises develop a sequence of models to take into account the interactions between
sugar, yeast, and alcohol.

1. (a) In the first model assume that the sugar supply is not depleted, that no alcohol appears,
and that the yeast simply grows logistically. Begin by adding 0.5 lb of yeast to a large vat of grape
juice whose carrying capacity is 10 lbs of yeast. Assume that the natural growth rate of the yeast
is 0.2 lbs of yeast per hour, per pound of yeast. Let Y (t) be the number of pounds of live yeast
present after t hours; what differential equation describes the growth of Y ?
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(b) Graph the solution Y (t), for example by using a suitable modification of the program SIR.sws.
Indicate on your graph approximately when the yeast reaches one-half the carrying capacity of
the vat, and when it gets to within 1% of the carrying capacity.

(c) Suppose you use a second strain of yeast whose natural growth rate is only half that of the
first strain of yeast. If you put 0.5 lb of this yeast into the vat of grape juice, when will it
reach one-half the carrying capacity of the vat, and when will it get to within 1% of the carrying
capacity? Compare these values to the values produced by the first strain of yeast: are they larger,
or smaller? Sketch, on the same graph as in part (b), the way this yeast grows over time.

2. (a) Now consider how the yeast produces alcohol. Suppose that waste products are generated
at a rate proportional to the amount of yeast present; specifically, suppose each pound of yeast
produces 0.05 lbs of alcohol per hour. (The other major waste product is carbon dioxide gas,
which bubbles out of the liquid.) Let A(t) denote the amount of alcohol generated after t hours.
Write a differential equation that describes the growth of A.

(b) Consider the toxic effect of the alcohol on the yeast. Assume that yeast cells die at a rate
proportional to the amount of alcohol present, and also to the amount of yeast present. Specifically,
assume that, in each pound of yeast, a pound of alcohol will kill 0.1 lb of yeast per hour. Then, if
there are Y lbs of yeast and A lbs of alcohol, how many pounds of yeast will die in one hour? Modify
the original logistic equation for Y (strain 1) to take this effect into account. The modification
involves subtracting off a new term that describes the rate at which alcohol kills yeast. What is
the new differential equation?

(c) You should now have two differential equations describing the rates of growth of yeast and
alcohol. The equations are coupled, in the sense that the yeast equation involves alcohol, and
the alcohol equation involves yeast. Assuming that the vat contains, initially, 0.5 lb of yeast and
no alcohol, describe by means of a graph what happens to the yeast. How close does the yeast get
to carrying capacity, and when does this happen? Does the fermentation end? If so, when; and
how much alcohol has been produced by that time? (Note that since Y will never get all the way
to 0, you will need to adopt some convention like Y  .01 to specify the end of fermentation.)

3. What happens if the rates of toxicity and alcohol production are different? Specifically, in-
crease the rate of alcohol production by a factor of five – from 0.05 to 0.25 lbs of alcohol per hour,
per pound of yeast – and at the same time reduce the toxicity rate by the same factor – from 0.10
to 0.02 lb of yeast per hour, per pound of alcohol and pound of yeast. How do these changes affect
the time it takes for fermentation to end? How do they affect the amount of alcohol produced?
What happens if only the rate of alcohol production is changed? What happens if only the toxicity
rate is reduced?

4. (a) The third model will take into account that the sugar in the grape juice is consumed.
Suppose the yeast consumes 0.15 lb of sugar per hour, per lb of yeast. Let S(t) be the amount of
sugar in the vat after t hours. Write a differential equation that describes what happens to S over
time.

(b) Since the carrying capacity of the vat depends on the amount of sugar in it, the carrying
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capacity must now vary. Assume that the carrying capacity of S lbs of sugar is .4S lbs of yeast.
How much sugar is needed to maintain a carrying capacity of 10 lbs of yeast? How much is needed
to maintain a carrying capacity of 1 lb of yeast? Rewrite the logistic equation for yeast so that
the carrying capacity is .4S lbs, instead of 10 lbs, of yeast. Retain the term you developed in 9.b
to reflect the toxic impact of alcohol on the yeast.

(c) There are now three differential equations. Using them, describe what happens to .5 lbs of
yeast that is put into a vat of grape juice that contains 25 lbs of sugar at the start. Does all the
sugar disappear? Does all the yeast disappear? How long does it take before there is only .01 lb
of yeast? How much sugar is left then? How much alcohol has been produced by that time?

Part 2: Newton’s law of cooling

Suppose that we start off with a freshly brewed cup of coffee at 90�C and set it down in a room
where the temperature is 20�C. What will the temperature of the coffee be in 20 minutes? How
long will it take the coffee to cool to 30�C?

If we let the temperature of the coffee be Q (in �C), then Q is a function of the time t, measured
in minutes. We have Q(0) = 90�C, and we would like to find the value t1 for which Q(t1) = 30�C.

It is not immediately apparent how to give Q as a function of t. However, we can describe the
rate at which a liquid cools off, using Newton’s law of cooling: the rate at which an object
cools (or warms up, if it’s cooler than its surroundings) is proportional to the difference between
its temperature and that of its surroundings.

5. In our example, the temperature of the room is 20�C, so Newton’s law of cooling states that
Q

0(t) is proportional to Q�20, the difference between the temperature of the liquid and the room.
In symbols, we have

Q
0 = �k (Q� 20)

where k is some positive constant.

(a) Why is there a minus sign in the equation?

The particular value of k would need to be determined experimentally. It will depend on things
like the size and shape of the cup, how much sugar and cream you use, and whether you stir the
liquid. Suppose that k has the value of 0.1� per minute per �C of temperature difference. Then
the differential equation becomes:

Q
0 = �0.1(Q� 20) �C per minute.

(b) Use Euler’s method to determine the temperature Q after 20 minutes. Write a table of
successive approximations with smaller and smaller step sizes. The values in your table should
stabilize to the second decimal place.

(c) How long does it take for the temperature Q to drop to 30�C? Use a DO-WHILE loop to
construct a table of successive approximations that stabilize to the second decimal place.
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6. On a hot day, a cold drink warms up at a rate approximately proportional to the difference
in temperature between the drink and its surroundings. Suppose the air temperature is 90�F and
the drink is initially at 36�F. If Q is the temperature of the drink at any time, we shall suppose
that it warms up at the rate

Q
0 = �0.2(Q� 90) �F per minute.

According to this model, what will the temperature of the drink be after 5 minutes, and after 10
minutes. In both cases, produce values that are accurate to two decimal places.

7. In our discussion of cooling coffee, we assumed that the coffee did not heat up the room. This
is reasonable because the room is large, compared to the cup of coffee. Suppose, in an effort to
keep it warmer, we put the coffee into a small insulated container – such as a microwave oven
(which is turned off). We must assume that the coffee does heat up the air inside the container.
Let A be the air temperature in the container and Q the temperature of the coffee. Then both A

and Q change over time, and Newton’s law of cooling tells us the rates at which they change. In
fact, the law says that both Q

0 and A
0 are proportional to Q� A. Thus,

Q
0 = �k1(Q� A)

A
0 = k2(Q� A),

where k1 and k2 are positive constants.

(a) Explain the signs that appear in these differential equations.

(b) Suppose k1 = .3 and k2 = 0.1. If Q(0) = 90�C and A(0) = 20�C, when will the temperature
of the coffee be 40�C? What is the temperature of the air at this time? Your answers should be
accurate to one decimal place.

(c) What does the temperature of the coffee become eventually? How long does it take to reach
that temperature?

Part 3: SIR revisited

Consider the spread of an infectious disease that is modelled by the SIR differential equations

S
0 = �.00001SI,

I
0 = .00001SI � .08 I,

R
0 = .08 I.

Take the initial condition of the three populations to be

S(0) = 35,400 persons,
I(0) = 13,500 persons,
R(0) = 22,100 persons.
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8. How many susceptibles are left after 40 days? When is the largest number of people infected?
How many susceptibles are there at that time? Explain how you could determine the last number
without using Euler’s method.

9. What happens as the epidemic “runs its course”? That is, as more and more time goes by,
what happens to the numbers of infecteds and susceptibles?

10. One of the principal uses of a mathematical model is to get a qualitative idea how a system
will behave with different initial conditions. For instance, suppose we introduce 100 infected
individuals into a population. How will the spread of the infection depend on the size of the
population? Assume the same SIR differential equations that were used in the previous exercise,
and draw the graphs of S(t) for initial susceptible population sizes S(0) ranging from 0 to 45,000
in increments of 5000 (that is, take S(0) = 0, 5000, 10000, . . . , 45000). In each case assume
that R(0) = 0 and I(0) = 100. Use these graphs to argue that the larger the initial susceptible
population, the more rapidly the epidemic runs its course.

11. Draw the graphs of I(t) for the same initial conditions as in the previous problem. Using
these graphs you can demonstrate that the larger the susceptible population, the larger will be
the fraction of the population that is infected during the worst stages of the epidemic. Do this
by constructing a table displaying Imax, tmax, and Pmax, where Imax is the maximum value of I(t),
tmax is the time at which this maximum occurs (that is, Imax = I(tmax)), and Pmax is the ratio of
Imax to the initial susceptible population: Pmax = Imax/S(0). The table below gives the first three
sets of values.

S(0) Imax Pmax tmax

5 000
10 000
15 000

100
315
2071

0.02
0.03
0.14

0
> 100

66
...

...
...

...
Your table should show that there is a time when over half the population is infected if S(0) =
45000, while there is never a time when more than one-fourth of the population is infected if
S(0) = 2,0000.

Part 4: Constructing models

Systems in which we know a number of quantities at a given time and would like to know their
values at a future time (or know at what future time they will attain given values) occur in many
different contexts. The following are some systems for discussion. Can any of these be modelled
as initial value problems? What information would you need to resolve the question? Make some
reasonable assumptions about the missing information and write down an initial value problem
which would model the system.

12. We deposit a fixed sum of money in a bank, and we’d like to know how much will be there
in ten years.
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13. We know the diameter of the mold spot growing on a cheese sandwich is 1/4 inch, and we’d
like to know when its diameter will be one inch.

14. We know the fecal bacterial and coliform concentrations in a local swimming hole, and we’d
like to know when they fall below certain prescribed levels (which the Board of Health deems safe).

15. We know what the temperature and rainfall is today, and we’d like to know what both will
be one week from today.

16. We know what the winning lottery number was yesterday, and we’d like to know what the
winning number will be the day after tomorrow.

17. We know where the earth, sun, and moon are in relation to each other now, and how fast
and in what direction they are moving. We would like to be able to predict where they are going
to be at any time in the future. We know the gravity of each affects the motions of the others by
determining the way their velocities are changing.


