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2.3 A global view

Derivative as Function

Up to now we have looked upon the derivative as a number. It gives us information about a
function at a point — the rate at which the function is changing at a point, the slope of the
function’s graph at a point, and so on.

But the numerical value of the derivative varies from point to point, and these values can also be
considered as the values of a new function — the derivative function — with its own graph. Viewed
this way the derivative is a global object.

The connection between a function and its derivative can be seen very clearly if we look at
their graphs. To illustrate, we’ll use the function I(¢) that describes how the size of an infected
population varies over time, from the SIR problem we analyzed in chapter 1. The graph of [
appears below, and directly beneath it is the graph of I’, the derivative of I. The graphs are lined
up vertically: for each t-value a, the values of I(a) and I’(a) are recorded on the same vertical line
that passes through the point ¢ = a on the t-axis.

infected persons

days

persons per day

t

\/ days

Figure 2.7. The graphs of a function I (top) and of its derivative I’ (bottom)
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To understand the connection between the graphs, keep in mind that the derivative represents a
slope. Thus, at any point ¢, the height of the lower graph (1) tells us the slope of the upper graph
(I). At the points where [ is increasing, I’ is positive — that is, I’ lies above its t-axis. At the
point where [ is increasing most rapidly, I’ reaches its highest value. In other words, where the
graph of [ is steepest, the graph of I’ is highest. At the point where I is decreasing most rapidly,
I’ has its lowest value.

Next, consider what happens when [ itself reaches its maximum value. Since [ is about to switch
from increasing to decreasing, the derivative must be about to switch from positive to negative.
Thus, at the moment when [ is largest, I’ must be zero. Note that the highest point on the graph
of I lines up with the point where I’ crosses the t-axis. Furthermore, if we zoomed in on the graph
of I at its highest point, we would find a horizontal line — in other words, one whose slope is zero.

All functions and their derivatives are related the same way that I and I’ are. In the following
table we list the various features of the graph of a function; alongside each is the corresponding
feature of the graph of the derivative.

function derivative
increasing positive
decreasing negative
horizontal Z€ero
steep (rising or falling) large (positive or negative)
gradual (rising or falling) small (positive or negative)
straight horizontal

By using this table, you should be able to make a rough sketch of the graph of the derivative,
when you are given the graph of a function. You can also read the table from right to left, to see
how the graph of a function is influenced by the graph of its derivative.

For instance, suppose the graph of the function L(x) is:

Then we know that the derivative L' must be 0 at points a, b, ¢, and d; that the derivative must
be positive between a and b and between ¢ and d, negative otherwise; that the derivative takes on
relatively large values at e and ¢ (positive) and at f and h (negative); that the derivative must
approach 0 at the right endpoint and be large and negative at the left endpoint. Putting all this
together we conclude that the graph of the derivative L’ must look something like following:
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L'=0

Conversely, suppose all we are told about a certain function G is that the graph of its derivative
G’ looks like this:

Then we can infer that the function G itself is decreasing between a and b and is increasing
everywhere else; that the graph of GG is horizontal at a, b, and ¢; that both ends of the graph of G
slope upward from left to right — the left end more or less straight, the right getting steeper and
steeper.

Formulas for Derivatives

The process of finding derivatives of functions is called differentiation.

Given a formula for a function f we can, at least in theory, differentiate f, at any point x where
f is locally linear. Namely, we can apply the formula

Az—0 Azx

(2.3.1)

This formula represents the same definition of the derivative as was given in Section 2.1. But in
that section, we wrote “a” to denote our input to f’. Here, we are instead using an “x” for our
input to f’, to emphasize the fact that this input is a wvariable. That is, we now are thinking
globally — we are thinking of f/(x) as a function of x, just as f(x) is. (Note that the domain of
f’ might be smaller than that of f, since there may be points at which f(x) is defined, but not
locally linear.)

Derivative calculations using equation (2.3.1) can sometimes be tedious, as you may have noticed
in the course of working examples and exercises from Section 2.1. Our goal over the next few
sections is to expedite the differentiation process, using two types of tools. The first variety of
tool is the differentiation formula. By this, we mean an equation that tells us how to differentiate
a particular function, or family of functions. The idea here is that certain kinds of functions —
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power functions, sines, and cosines, for example — arise frequently. If we catalog the derivatives of
such functions, we can then simply “look up” (or remember) those derivatives when we need them.

The second type of tool is the differentiation rule. By this we mean a general prescription for

expressing the derivative of a complex function in terms of the derivatives of simpler “building
blocks.”

The idea here is that many complex functions are built up from simpler ones. For instance, the
function given by the expression
32" + 8sin(z)y/r (2.3.2)

is built up from the basic functions 27, sin(z), and /z. In fact, since /= = 2'/2, we can think of
2" and /7 as two different instances of the general “power function” x?.

So, if we have differentiation formulas that tell us how to differentiate basic things like 2P and
sin(x), together with differentiation rules that tell us how to express the derivative of a complex
function in terms of simpler constituent parts, then we will be able to find derivatives of complicated
things like (2.3.2).

Differentiation formulas

Constant functions. Consider the constant function f(x) = ¢, where ¢ is a fixed real number.
The graph of this function is a horizontal line (of height ¢), and such a line has slope 0 at all points
x. But the derivative is the slope, so we conclude that

The derivative f’(x) of a constant function f(x) = c is zero at all points .

The constant formula

Power functions. Before proceeding further, we introduce some new notation. Namely, suppose
y = f(x) is a function of z. We will sometimes write

d
%[f(x)],

pronounced “dee dee x of f of x,” to denote the derivative f’(z). This new notation is called the
Leibniz notation for the derivative. It has the advantage of allowing us to refer to the derivative
of a function given by a formula without giving that function an explicit name. For example, the
derivative of the function defined by (2.3.2) may be expressed as

d . - )
%[31’ + 8sin(z)v/7].

And the above statement “The derivative f’(x) of a constant function f(x) = c is zero at all points
2” may simply be written

d
d—[c] = 0 for any constant c.
T
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(In writing a derivative formula using Leibniz notation, we will implicitly assume that the formula
holds at all points where the function to be differentiated is locally linear.) Of course we are not
restricted to x as a variable name; we might consider

d[ 2+4°
dz |1+ cos(2)]’
for example.

With this notation in hand, we now ask: what is

d 4
%[90]

for an arbitrary real number p? That is, what is the derivative of a power function? We first
consider some examples.

d

Example 2.3.1. Find the derivative d—[acp] for each of the following values of p: (a) p = 1; (b)
T

p=2(c)p=—1

Solution (a) The function f(z) = z' = x gives a line with slope 1, so d—[xl] = 1.
x

(b) We compute, using formula (2.3.1), that

d[ 2 _ 1 (r+ Azx)? —a? 1?4 2xAzx + (Azx)? — 22
dx vi= A:lcglo Ax - A?Eo Azx
20 A Ax)? Ax(2 A
= lim vAz + (Az) = lim m = lim (22 + Ax) = 2.
Az—0 A.Z’ Az—0 Al’ Axz—0

(You should compare both the computations and the result here to those of Exercise 2.1.2, which
investigated this same derivative, but specifically at the point x = 3.)

(c) We have
i[m—l}_i L limi L limi @~ (z+Az)
dz Cdr x| Ao Az \z+ Az x) A0 Ax\ (4 An)w
I B U W e
T Arso Az (z+Ax)z ) A0 (z+ Az)r 22 v

(To get the third equality, we found a common denominator for the two fractions inside the large
parentheses.)

The above example suggests a pattern, which we encapsulate as follows:

d
d—[:cp] = pxP~! for any real number p
x

The power formula
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(The power formula is also sometimes called the power rule, but we are reserving the term “rule”
for a different context; see the subsection “Differentiation rules,” below.)

There is one function to which both the constant and the power formula apply: the function
f(r) =1 = 2° Note that the constant formula tells us that, for this function, f’(z) = 0, while

d
the power formula tells us that f'(x) = d—[xo] = 027! = 0. That is, the two formulas give the
T

same answer in this case, as they had better! (Technically, neither z° nor 0z~! is well-defined if
xr = 0. We'll adopt the convention that both of these quantities equal 1 in the present context, so
that the desired equality holds even at = 0.)

We have by no means proved the power formula for all possible powers p. Note that there are
many types of exponents to consider: positive and negative integers; positive and negative rational
numbers (that is, fractions), irrational powers like v/2 and 7, and so on. Other references will
supply proofs for some or all of these kinds of exponents. We will content ourselves, here, with
simply stating the formula, and reassuring ourselves with the few special cases where we’ve actually
done the computations. And if you are still skeptical, the exercises below explore a few more special
cases, for additional reassurance.

In the following example, we investigate another family of functions, where the variable is in the
exponent — rather than being in the base, as it is for the power functions above.

Example 2.3.2. Exponential functions. Let b be a positive constant. Show that

d

(6] = In(v)y", (2.3.3)

where In(b), called the natural logarithm of b, is defined by the formula

n(b) = lm o (2.3.4)
B v .
Solution. Using the fact that b**t¥ = b*bY for all real numbers x and y, we find that

d . ) b:rJrAx —b* ) b:rbA:L‘ — b . bx(bAz o 1)

gV = Jim = i =l o — (2:3.5)

Now note that the factor *, on the right-hand side of equation (3.5.4), is independent of Az. So
we may, in fact, move this factor out in front of the “lima, ,o.” We do so using the eminently
plausible, and true, fact (whose proof we omit) that “the limit of a constant multiple equals the
constant multiple of the limit.” That is, if Q(Az) is some quantity that approaches a number L
as Az — 0, and if ¢ is a number that does not depend on Az, then ¢ Q(Ax) approaches cL as
Az — 0. This fact, together with (3.5.4), tell us that

d T T 1: be -1 x
%[b I=b Alggo Az = In(b)¥",

as required.
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A few comments on Example 2.3.2 are in order. First: we require that b > 0 to avoid difficulties
like square roots of negative numbers. For example, were we to take b = —1, then letting z = 1/2
would give b = (—1)¥/2 = /—1, which is not defined (as a real number). Stipulating that b > 0
eliminates such issues.

Second: In(b) depends on b, but not on z. So the above example demonstrates the fundamental
fact that the derivative of an exponential function is a constant (with respect to the independent
variable) times that function. We've encountered functions that behave like this before — see the
subsection “Proportionality in rate equations,” and the associated exercises, in Section 1.5 above.
There, we considered quantities P satisfying rate equations of the form P’ = kP. In light of
Example 2.3.2, then, we should expect that such quantities P are exponential in nature. This
expectation will be borne out in Section 3.1 below.

Third: the definition (2.3.4) of In(b) is a bit complicated. And in general, there’s no algebra we
can do to extract precise numerical values from this definition — except for the case b = 1, since

In(1) = i it T ek O _ tim0=0
M= 0 Az A Az anBoAr Arbes

For more general b > 0, we can nonetheless obtain, from (2.3.4), an arbitrarily good approzimation
to In(b). We do so by evaluating the difference quotient in (2.3.4) at a suitably small value of Ax.
For example: putting b = 2 and Ax = 0.000001 gives

20.000001 -1

n(2) ~ > — 0.69314...
n(2) ~ = 500001 ’

which is correct to five decimal places.

Fourth: you may have encountered natural logarithms in other contexts, where you probably saw
them defined differently. We’ll see in Chapter 3 that other, perhaps more familiar, definitions of
In(b) are equivalent to the one given above.

Fifth, and last: note the fundamental difference between a power function, where the input, or
independent variable, is in the base, and an exponential function, where the input appears in
the exponent. When you differentiate a power function, the original exponent drops by 1, and
also appears as a factor in your derivative. When you differentiate an exponential function, the
exponent doesn’t change, but the natural logarithm of the base appears as a factor. For example,

—[2™] = 72™ ! but i[ﬂ'x] = In(m)7".

dx

The final general category of function that we will consider, in this section, is the category of
trigonometric functions. For example, let h'(z) = sin(z): we saw in Example 2.1.3 above that
R'(0) = 1. Using ideas from that example, together with some trigonometric identities, we can

similarly show that hA/(z) = cos(x) for all x. And we can analogously compute di[cos(x)] and
T

d
—[tan(z)]. See the Exercises below. We compile these results, along with the others catalogued

above, into the following table.
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function f(z) derivative f'(z) = i[f(x)]

dz

c 0

aP paP~!

b In(b)b*
sin(x) cos(x)
cos(x) —sin(x)
tan(z) sec?()

Table 2.1 A short table of derivative formulas

Here ¢ and p can be any real numbers, and b can be any positive number. Also, recall that
sec(x) = 1/ cos(z), and that sec?(x) is shorthand for (sec(x))?.

Again, remember that the input to the trigonometric functions is always measured in radians; the
above formulas are not correct if x is measured in degrees. There are similar formulas if you insist
on using degrees, but they are more complicated. This is the principal reasons we work in radians
— the derivative formulas are nice!

Differentiation Rules

Since basic functions are combined in various ways to make formulas, we need to know how to
differentiate combinations. For example, suppose we add the functions g(z) and h(z), to get
f(z) = g(x) + h(x). It may be shown, then, that f is differentiable too, and moreover, that
“the rate at which f changes is the sum of the separate rates at which g and h change,” or “the
derivative of the sum is the sum of the derivatives.” More formally, we have

2 [f@) +9@)] = (@) +¢'(@)

The sum rule

For example,
if f(z)=tan(x) +27° then f'(z) = sec*(z) — 627 ;

4 [2 + cos(w)] = In(2)2" — sin(w).
dw

Likewise, if we multiply any differentiable function g by a constant ¢, then, as one can show, the
product f(x) = cg(x) is also differentiable, and moreover “the derivative of the constant multiple
equals the constant multiple of the derivative,” or “rescaling a function rescales its rate of change
by the same factor.” That is,

d 4
—lef(@) = cf (x)

The constant multiple rule
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d
For example, d—[5 sin(x)] = 5cos(x). Likewise, if g(z) = 2523, then ¢/(2) = 25 x 32 = 752%. How-
T

ever, the rule does not tell us how to find the derivative of sin(5z), because sin(5z) # 5sin(x). To
work this one out, we will need the chain rule, which describes how to differentiate compositions
f(g(z)), in terms of the derivatives f" and ¢’. See the following section. Subsequent sections will
also investigate derivatives of products f(x)g(x) and quotients f(x)/g(z).

With just the few facts already laid out, we can differentiate a variety of functions given by
formulas. Here are a couple more simple examples.

Example 2.3.3. Find:

d —7 cos(q

4 — 239449237™
(@) 2 4923 m

(b) The derivative of the general polynomial function
P(z) = apx™ + ap_12™ "+ -+ ag2® + ayx + ag.

Here ay,, a,_1, ..., as, a1, ag are all constants, and n is a positive integer, called the degree
of the polynomial.

Solution. (a) We express the second and third summands in terms of powers, so that we can use
the power formula. Then, by Table 2.1 and the sum and constant multiple rules, above,

CZ] { 7COS + 5/ VA 9; 5 492357 - 239449237r”]

_ diq [_7%? + 5¢'/3 + q—1/2 + 4923(] + 4923 57 — 239449237 ]

— TS+ 5+ Tl 4 o )+ 4923 ]~ 23944925 7 [
_ _%(_ sin(q)) + 5 x %q8/3 = %q_?’/Q + 49123 X 5¢" + 4923 x In(5)57 — 23944923 x 0
— % sin(q) + %qg/?’ — %q—f”/? - 45923 + 4923 1n(5)5%.

(b) The polynomial P(x) is a sum of terms, each of which is a constant multiple of an integer
power of the input variable. (A polynomial of degree 1 is just a linear function.) The derivative
of P(x), by the sum and constant multiple rues and the power and constant formulas above,

P'(z) = na,a" '+ (n — Dap_12" 2 + - + 2a07 + ay.

Exercises
Part 1: Sketching the graph of the derivative

1. Use a computer utility to sketch the graphs of two different linear functions that have the
same derivative.
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2. Here are the graphs of four related functions: s, its derivative s’, another function c(t) = s(2t),

and its derivative ¢/(t). The graphs are out of order. Label them with the correct names s, ¢, ¢,
and ¢

: b : AN

3. (a) Suppose a function y = g(x) satisfies g(0) = 0 and 0 < ¢'(x) < 1 for all values of = in the

interval 0 < x < 3. Explain carefully why the graph of ¢ must lie entirely in the triangular region
shaded below:

(b) Suppose you learn that ¢g(1) = .5 and ¢g(2) = 1. Draw the smallest shaded region in which
you can guarantee that the graph of g must lie.

4. Suppose h is differentiable over the interval 0 < z < 3. Suppose h(0) = 0, and that

5<h(r)<1 for 0<z<1
h'(x) <.5 for 1<x<2
—1<h(z) <0 for 2<x<3

Draw the smallest shaded region in the x, y-plane in which you can guarantee that the graph of
y = h(z) must lie.

5. For each of the functions graphed below, sketch the graph of its derivative.
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iv.

-

vii.

-

Part 2: Differentiation using the definition of the derivative

ii. y iii.
X I X
V. Ty vi.
X X
_ \¥
viii. Ty ix.
/\ o\ :

\V

85

For each exercise in this section, use the definition (2.3.1) to deduce the indicated derivative

formula.

6. (a) Show that, if f(x) = /z, then f'(z) =

2Vx

. For this exercise, you might wish to use the



86 CHAPTER 2. THE DERIVATIVE

algebra “trick” of multiplying both numerator and denominator of a fraction by the same thing.
More specifically, note that

() = Tim Vao+Ar—\x lim Vi+ Azx—x v+ Ax+/x
 Az—0 Ax T Az50 Ax Vr+ Az + .z
o Ve AT VD(ET AT+ V)
Az—0 Az(vVr + Az +/7) '
Do the algebra in the numerator; you should end up with a numerator that involves no square

roots. (Use the fact that (\/17)2 =Y for any Y.) You should then be able to cancel out a Az in
your numerator and denominator. Then compute what happens to what’s left, as Az — 0.

(b) Explain why part (a) of this exercise agrees with the case p = 1/2 of the power formula.

1

1
7. (a) Show that, if g(z) = —, then ¢'(z) = — . Hint: obtaining a common denominator
@ ole) = = then () =~ :
gives
)= din (e - L) - g L (YT
Az—0 Az \ /x + Ax \/E Az—0 Az A /x(x + A.CL’)

Multiply the right-hand side by

VI + v+ Ax
VT +Vr+ Az

and simplify. You should then be able to cancel out a Ax top and bottom, and then take the
appropriate limit.

(b) Explain why part (a) of this exercise agrees with the case p = —1/2 of the power formula.

1 2
8. (a) Show that, if k(z) = —;, then ¥'(x) = —— . Hint obtaining a common denominator gives
T

, . 1 1 1 _ 1 [(2? - (z+ Ax)?
E(z)=lm — +—F—— =) = lim — .
Az—0 Az \ (z + Az)? 22 Az—0 Az \ 22%(z 4+ Ax)?
Perform some algebra in the numerator; then cancel out a Az top and bottom; the consider what

happens as Az — 0.

(b) Explain why part (a) of this exercise agrees with the case p = —2 of the power formula.

9. Show that, if h(z) = sin(x), then A'(x) = cos(z). Hint: using the trigonometric identity
sin(a + b) = sin(a) cos(b) + cos(a) sin(b),
we find that

W(z) = lim sin(z + Az) — sin(z) ~ lim sin(z) cos(Az) + cos(x) sin(Az) — Sin(l‘)‘

Az—0 A,{E Az—0 AQS’
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If you collect some terms in the numerator, then you can use the limit formulas

in(A Az)—1
lim sin(Ar) _ 1 and lim cos(Ar) =1 _ 0.
Az—0 Az Az—0 Ax
d . L .
10. Show that d—[cos(x)] = —sin(z). The process is similar to that of Exercise 9 above, except

that, in the present case, you’ll want to use the trigonometric identity

cos(a + b) = cos(a) cos(b) — sin(a) sin(b).

d
11.  Show that d—[tan(x)] = sec’(x). Hint: use the fact, which may be shown using the trigono-
T

metric identities given in the preceding two exercises, that

sin(Axz) sec(x)

tan(z + Az) — tan(z) = cos(Ax) cos(z) — sin(Az) sin(z)

You may also want to use one of the limit formulas from Exercise 9, and the facts that sin(0) =0
and cos(0) = 1.

Part 3: Differentiation using rules and formulas

12.  Find the indicated derivatives, using rules and formula for this section.

(a) f'(x)if f(z)=32" — 32t + wa® — 17

(b) di{\/ﬁf+1]

(€) H(w) it hw) = 1=~ sin(w) + ﬁ
d [4cos(u) 3tan(u)
@) |2t - 2 gl

(e) V'(s)if V(s) = V16 — /s
(f) The derivative with respect to z of F(z) = /7 -2% 4 (1/2)*

(g) P'(t)if P(t) = —th + vt +do (a, vo, and dy are constants)

13. Use a computer graphing utility for this exercise.

For each of the parts (a),(b),(c),(d) of this exercise, graph all three of the following functions on
the same set of axes:
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(i) The given function f, on the indicated interval;

(ii) The function g(z) = (f(z + .01) — f(x)) /0.01 that estimates the slope of the graph of f at
Z;

(iii) The function h(z) = f'(x), where you use the differentiation rules to find f’.

(a) f(z)=2"on —1<z<1.
(b) fz)=2"'onl<az<8,

(¢) f(z)=+Ton.25<z<0.
(d) f(z)=sin(z) on 0 < z < 2r.

The graphs of g and h should coincide, at least roughly, in each case. Do they?

14. 1In each case below, find a function f(z) whose derivative f’(x) is:

15.  What is the slope of the graph of y = x — /x at x =47 At x = 1007 At x = 100007

3 increasing?

16. (a) For which values of z is the function z — x
(b) Where is the graph of y = x — 23 rising most steeply?
(c) At what points is the graph of y = x — 3 horizontal?

(d) Make a sketch of the graph of y = x — z® that reflects all these results.

)
17. (a) Sketch the graph of the function y = 2z + — on the interval 0.2 < z < 4.
x

(b) Where is the lowest point on that graph? Give the value of the z-coordinate exactly. [Answer:

v = V572

18.  What is the slope of the graph of y = sin(x) + cos(z) at © = 7 /47
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19. Write down two quadratic polynomials f(z) and g(x) that have the same derivative. (A
quadratic polynomial is a polynomial of degree two. See Example 2.3.3 above.) Supply a computer
graph of these two functions, both graphed on the same set of axes.

20. A ball is held motionless and then dropped from the top of a 200 foot tall building. After ¢
seconds have passed, the distance from the ground to the ball is d = f(t) = —16t* + 200 feet.

(a) Find a formula for the velocity v = f’(¢) of the ball after ¢ seconds. Check that your formula
agrees with the given information that the initial velocity of the ball is 0 feet/second.

(b) Draw graphs of both the velocity and the distance as functions of time. What time interval
makes physical sense in this situation? (For example, does ¢ < 0 make sense? Does the distance
formula make sense after the ball hits the ground?)

(c) At what time does the ball hit the ground? What is its velocity then?

21. A second ball is tossed straight up from the top of the same building with a velocity of
10 feet per second. After ¢ seconds have passed, the distance from the ground to the ball is
d = f(t) = —16t* + 10t + 200 feet.

(a) Find a formula for the velocity of the second ball. Does the formula agree with given infor-
mation that the initial velocity is +10 feet per second? Compare the velocity formulas for the two
balls; how are they similar, and how are they different?

(b) Draw graphs of both the velocity and the distance as functions of time. What time interval
makes physical sense in this situation?

(c) Use your graph to answer the following questions. During what period of time is the ball
rising? During what period of time is it falling? When does it reach the highest point of its flight?

(d) How high does the ball rise?

22. (a) What is the velocity formula for a third ball that is thrown downward from the top of the
building with a velocity of 40 feet per second? Check that your formula gives the correct initial
velocity.

(b) What is the distance formula for the third ball? Check that it satisfies the initial condition
(namely, that the ball starts at the top of the building).

(c) When does this ball hit the ground? How fast is it going then?

23. A steel ball is rolling along a 20-inch long straight track so that its distance from the midpoint
of the track (which is 10 inches from either end) is d = 3sint inches after ¢ seconds have passed.
(Think of the track as aligned from left to right. Positive distances mean the ball is to the right
of the center; negative distances mean it is to the left.)

(a) Find a formula for the velocity of the ball after ¢ seconds. What is happening when the
velocity is positive; when it is negative; when it equals zero? Write a sentence or two describing
the motion of the ball.
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(b) How far from the midpoint of the track does the ball get? How can you tell?

(c) How fast is the ball going when it is at the midpoint of the track? Does it ever go faster than
this? How can you tell?

24. A forester who wants to know the height of a tree walks 100 feet from its base, sights to the
top of the tree, and finds the resulting angle to be 57 degrees.

(a) What height does this give for the tree?

(b) If the measurement of the angle is certain only to 5 degrees, what can you say about the
uncertainty of the height found in part (a)? (Note: you need to express angles in radians to use
the formulas from calculus: 7 radians = 180 degrees.)

25. (a) In the preceding problem, what percentage error in the height of the tree is produced by
a 1 degree error in measuring the angle?

(b) What would the percentage error have been if the angle had been 75 degrees instead of 57
degrees? 40 degrees?

(c) If you can measure angles to within 1 degree accuracy and you want to measure the height
of a tree that’s roughly 150 feet tall by means of the technique in the preceding problem, how far
away from the tree should you stand to get your best estimate of the tree’s height? How accurate
would your answer be?



