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1.4 Functions and graphs

A number of important mathematical ideas have already emerged in our study of an epidemic. In
this section we pause to consider them, because they have a “universal” character. Our aim is to
get a fuller understanding of what we have done so far, so we can use the ideas in other contexts.

One of these crucial ideas, which is central to mathematics, is that of a function. This idea is
worth highlighting:

A function is a rule that specifies how
the value of one variable, the input, determines

the value of a second variable, the output.

Definition of a function

That is, a function describes how one quantity depends on another. For example, in our study of a
measles epidemic, the relation between the number of susceptibles S and the time t is a function.
We write S(t) to denote that S is a function of t. Here, the variable t is called the input, and
the variable S is called the output. We think of S as depending on t, so t is also called the
independent variable and S the dependent variable.

We can also write I(t) and R(t), because I and R are functions of t, too. We can even write S
0(t)

to indicate that the rate S
0 at which S changes over time is a function of t.

In speaking, we express S(t) as “S of t” and S
0(t) as “S prime of t.”

Notice we say that a function is a rule, and not a formula. This is deliberate. We want the study
of functions to be as broad as possible, to include various ways in which one quantity can be
related to another.

So far, we have followed the standard practice in science of letting the single letter S designate
both the function – that is, the rule – and the output of that function – that is, the dependent

variable. Sometimes, though, we will want to make the distinction. In that case we will use two
different symbols. For instance, we might write S = f(t); here, we are still using S to denote the
output, but the new symbol f stands for the function rule. Or we might write y = S(t), in which
case we are still using S to denote the rule, but the new symbol y stands for the output.

Example 1.4.1. Some other examples of functions are as follows:

1. The amount of postage you pay for a letter is a function of the weight of the letter.

2. The time of sunrise is a function of what day of the year it is.

3. The position of a car’s gasoline gauge (measured in centimeters from the left edge of the gauge)
is a function of the amount of gasoline in the fuel tank.

4. The volume of a cubical box is a function of the length of a side. The last is a rather special
kind of function because it can be described by an algebraic formula: if V is the volume of the
box and s is the length of a side, then V (s) = s

3.
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5. The formula y = x
2 defines y as a function of x. We have not given an explicit name to

this function, but of course we could: we might call the rule f , in which case we could write
f(x) = x

2 or, to be even more complete, y = f(x) = x
2. Or we might avoid introducing a new

letter, like f , and simply use the same letter y to denote the both the output of the function
and the function itself. That is, we might sometimes write y(x) = x

2.

Similarly, the formulas y =
p
x� 1, y = 1/

p
3� 2x, and y = 3x � 5 all express an output y

as a function of an input x. The last of these formulas gives an example of a linear function.
Linear functions will be discussed in detail in the next section.

6. Temperature F , in degrees Fahrenheit, is a function of temperature C, in degrees Celsius,
according to the formula

F =
9

5
C + 32

(which also describes a linear function).

7. The formula

P (t) =
100

1 + 9e�t/10

might express population P (t), in thousands, as a function of time t, in days (from a given
starting point), in a certain “logistic growth” situation. We’ll discuss logistic growth in more
detail later.

8. A constant function is one that gives the same output for every input. If h is the constant
function that always gives back 17, then in formula form we would express this as h(x) = 17.
Here, it doesn’t matter what the input x is. For example, h(0) = 17, h(�35) = 17, h(47⇡) = 17,
h(whatever) = 17!

9. Water density D, in kilograms per cubic meter (kg/m3), is a function of water temperature C,
in degrees Celsius; we might write D = q(C).

Some technical details

Domain and range. The set of values that the input to a function takes is called the domain
of the function. The domain may depend on the contexts, both physical and mathematical. If
no physical context is given, then the domain is sometimes called the natural domain. This
terminology is perhaps a bit misleading, in that the natural domain is the domain that applies in
the absence of any natural, “real-world” constraints. But it is what it is.

For example, the function defined by y = 1/
p
3� 2x has natural domain equal to

{real numbers x : x < 3/2} (1.4.1)

(the set of all real numbers x that are less than 3/2). Why? Because, mathematically, one
can neither divide by zero nor take the square root of a negative number. So in the formula
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y = 1/
p
3� 2x, we can neither have 3 � 2x = 0 or 3 � 2x < 0. So we must have 3 � 2x > 0, or

3 > 2x, or 3/2 > x, or x < 3/2. In interval notation, the set of such x may be denoted (�1, 3/2).

Next, consider the formula F = 9
5C+32 in item 6 of the above example. All by itself, this formula

defines a function with natural domain equal to the set of all real numbers, denoted (�1,1) or,
sometimes, R. This is because 9

5C + 32 makes mathematical sense for any real number C.

But in this case, the formula is not the complete picture. A physical context for the formula
F = 9

5C + 32 was explicitly stated, which puts restrictions on our domain. Namely, since �273�

Celsius is absolute zero, a reasonable domain to ascribe to this situation is

(�273,1) or {C 2 R : C > �273}.

One might argue that absolute zero is theoretically attainable, in which case one might take the
domain to be [�273,1). At the other end, contemporary models postulate a maximum attainable
“Planck temperature” TP equal to about 1.417⇥ 1032 degrees Celsius, so maybe the domain here
should be (�273, 1.417⇥ 1032). (Or [�273, 1.417⇥ 1032]?)

The moral is that domains can sometimes be open to interpretation! (This is true even of natural

domains. For example, if one allows for complex numbers, then one can take the square root
of a negative number. In this text, though, unless otherwise stated, we will allow only for real
numbers.)

The set of values taken by the output of a function is called the range of the function. This will
depend on the domain. For example, if we take [�273, 1.417 ⇥ 1032] as the domain of a function
given by the formula F = 9

5C + 32, then the range of this function is


9

5
(�273) + 32,

9

5
(1.417⇥ 1032) + 32

�
= [�459.4, 2.5506⇥ 1032].

Input versus output. Note the use of the words “rule,” “specifies,” and “determines” in our
definition of function, above. These words all highlight an essential property of any function: a
function associates a unique output to each particular input. Another word for “unique,” in this
context, is “unambiguous.”

For example, the formula y = x
2 defines y as a function of x, because given x, we know exactly

what y is: it’s the square of x. If x = 3, we know unambiguously that y = 32 = 9, and so on.

As a consequence of our definition of function, the statement “y is a function of x” need not
imply that x is a function of y. Indeed, the formula y = x

2 does not give x as a function of y. If
we choose y = 16, for example, there is ambiguity as to what x must be: x could equal 4, but it
could also equal �4, since both of these numbers satisfy the equation 16 = x

2.

Of course, many functions do specify input and output uniquely in terms of each other. Such
functions are sometimes said to be one-to-one. For example, the equation F = 9

5C + 32 describes
a one-to-one function; this function does give C uniquely in terms of F (in addition to giving F

uniquely in terms of C). Specifically, we can solve this equation for C to get the unambiguous
formula

C =
5

9
(F � 32).
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We’ll return to the topic of one-to-one functions in a later chapter.

Function notation; chaining, or composing, functions

It is important not to confuse an expression like S(t) with a product; S(t) does not mean S⇥t. On
the contrary, the expression S(1.4), for example, stands for the output of the function S when 1.4
is the input. In the epidemic model, we interpret this as the number of susceptibles that remain
1.4 days after today (or whatever day we designate as t = 0).

The symbols we use to denote the input and the output of a function are just names; if we change
them, we don’t change the function. For example, here are four ways to describe the same function
g:

g : multiply the input by 5, then subtract 3;
g(x) = 5x� 3;

g(u) = 5u� 3;

g(whatever) = 5⇥ whatever � 3.

.

It is important to realize that the formulas we just wrote in the last three lines are merely shorthand
for the instructions stated in the first line.

If you keep this in mind, then complex-looking combinations like g(g(2)) can be decoded easily by
remembering g of anything is just 5 times that anything, minus 3. We could thus evaluate g(g(2))
from the inside out:

g(g(2)) = g(5 · 2� 3) = g(7) = 5 · 7� 3 = 32,

or we could evaluate it from the outside in:

g(g(2)) = 5g(2)� 3 = 5(5 · 2� 3)� 3 = 5 · 7� 3 = 32,

as before. It is often, though by no means always, easier to evaluate combinations like g(g(2))
from the inside out.

Suppose f is some other rule, say f(x) = x
2 � 1. Remember that this is just shorthand for “Take

the input (whatever it is), square it, and subtract 1,” or “f of whatever is whatever squared, minus
one.” We could then evaluate

f(g(3)) = f(5 · 3� 3) = f(12) = 122 � 1 = 144� 1 = 143,

while
g(f(3)) = g(32 � 1) = g(8) = 5⇥ 8� 3 = 37.

More generally, we have

f(g(x)) = f(5x� 3) = (5x� 3)2 � 1 = 25x2 � 30x+ 9� 1 = 25x2 � 30x+ 8

and
g(f(x)) = g(x2 � 1) = 5(x2 � 1)� 3 = 5x2 � 5� 3 = 5x2 � 8.
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When we use the output of one function as the input for another, we say that we are chaining,
or composing, these functions. More specifically, the function y = f(g(x)) obtained by taking the
output of g, and using this output as the input to f , is called the composition of f and g (denoted
f � g in some references, though we will not use this notation). Schematically, the picture is this:

The composition, or chain, of f and g

Warning: the composition of f and g is not, in general, the same as the composition of g and f ;
our above example illustrates a situation where f(g(x)) 6= g(f(x)).

To avoid possible confusion, we will usually say things like “the composition f(g(x))” rather than
“the composition of f and g,” since the latter terminology does not emphasize the order is which
the composition is done.

Note that chaining is not limited to situations involving only two functions.We can chain together
any number of functions: For example, if f and g are as above, and h(x) = 3 � x, then we can
form the function y = g(h(f(x))), defined as follows (working from the inside out):

g(h(f(x))) = g(h(x2 � 1)) = g(3� (x2 � 1)) = g(3� x
2 + 1)

= g(4� x
2) = 5(4� x

2)� 3 = 20� 5x2 � 3 = 17� 5x2
.

And so on.

Chaining will turn out to be very important later in this course. For now, though, you should treat
it simply as part of the formal language of mathematics. It is somewhat analogous to learning
how to conjugate verbs in French class – it’s perhaps not very exciting for its own sake, but it
allows us to read the interesting stuff later on.

Graphs

A graph describes a function in a visual form. Sometimes – as with a seismograph or a lie detector,
for instance – this is the only description we have of a particular function. The usual arrangement
is to put the input variable on the horizontal axis and the output on the vertical – but it is a
good idea when you are looking at a particular graph to take a moment to check; sometimes, the
opposite convention is used! This is often the case in geology and economics, for instance.



34 CHAPTER 1. A CONTEXT FOR CALCULUS

-

6

t

S

10 20 30 days

20000

40000

people

s

ss

t0

S0
(t0, S0)pppppppppp

pppppppppp

Sketched above is the graph of a function S(t) that tells how many susceptibles there are after t

days. Given any t0, we “read” the graph to find S(t0), as follows: from the point t0 on the t-axis,
go vertically until you reach the graph; then go horizontally until you reach the S-axis. The value
S0 at that point is the output S(t0). Here t0 is about 13 and S0 is about 27,000; thus, the graph
says that S(13) ⇡ 27,000, or about 27,000 susceptibles are left after 13 days.

The circular functions

Graphing packages “know” the familiar functions of trigonometry. Trigonometric functions are
qualitatively different from the functions in the preceding problems. Those functions are defined by
algebraic formulas (that is, formulas involving only addition, subtraction, multiplication, division,
exponentiation, and roots), so they are called algebraic functions. The trigonometric functions
are defined by explicit “recipes," but not by algebraic formulas; they are called transcendental
functions. For calculus, we usually use the definition of the trigonometric functions as circular
functions. This definition begins with a unit circle centered at the origin. Given the input number
t, locate a point P on the circle by tracing an arc of length t along the circle from the point (1,0).
If t is positive, trace the arc counterclockwise; if t is negative, trace it clockwise. Because the circle
has radius 1, the arc of length t subtends a central angle of radian measure t.
The circular (or trigonometric) functions cos t and
sin t are defined as the coordinates of the point P ,

P = (cos(t), sin(t)).

The other trigonometric functions are defined in
terms of the sine and cosine:

tan(t) = sin(t)/ cos(t), sec(t) = 1/ cos(t),

cot(t) = cos(t)/ sin(t), csc(t) = 1/ sin(t).

P

x

y
t

(cos(t),sin(t)) 

1
(1, 0)
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Notice that when t is a positive acute angle, the
circle definition agrees with the right triangle defi-
nitions of the sine and cosine:

sin(t) =
opposite

hypotenuse
and cos(t) =

adjacent
hypotenuse

.

However, the circle definitions of the sine and co-
sine have the important advantage that they pro-
duce functions whose domains are the set of all real
numbers. (What are the domains of the tangent,
secant, cotangent and cosecant functions?)

t x

y

(cos(t),sin(t)) 

1

cos(t) 

sin(t) 

In calculus, angles are also always measured in radians. To convert between radians and degrees,
notice that the circumference of a unit circle is 2⇡, so the radian measure of a semi-circular arc is
half of this, and thus we have

⇡ radians = 180 degrees.
As the course progresses, you will see why radians are used rather than degrees (or mils or any
other unit for measuring angles) – it turns out that the formulas important to calculus take their
simplest form when angles are expressed in radians.

If one graphs the cosine of an angle on the vertical axis, against the radian measure of that angle
on the horizontal axis, then, one gets a picture like this:

-2π -π π 2π 3π
t

-1.0

-0.5

0.5

1.0

y
y=cos(t)

The graph of y = sin(t) looks similar, but shifted to the right by ⇡/2 radians (so that the graph
of the sine function goes though the origin (0,0)).

Computer graphing packages “know" the trigonometric functions in radian form. You might won-
der, though, how a computer or calculator “knows” that sin(1) = .017452406 . . .. It certainly isn’t
drawing a very accurate circle somewhere and measuring the y coordinate of some point. While
the circular function approach is a useful way to think about the trigonometric functions concep-
tually, it isn’t very helpful if we actually want values of the functions. One of the achievements
of calculus, as you will see later in this course, is that it provides effective methods for computing
values of functions like the circular functions that aren’t given by algebraic formulas.
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Functions of Several Variables

Language and notation. Many functions depend on more than one variable. For example,
sunrise depends on the day of the year but it also depends on the latitude (position north or south
of the equator) of the observer. Likewise, the crop yield from an acre of land depends on the
amount of fertilizer used, but it also depends on the amount of rainfall, on the composition of the
soil, on the amount of weeding done – to mention just a few of the other variables that a farmer
has to contend with.

The rate equations in the SIR model also provide examples of functions with more than one input
variable. The equation

I
0 = .00001SI � I/14

says that we need to specify both S and I to find I
0. We can say that

F (S, I) = .00001SI � I/14

is a function whose input is the ordered pair of variables (S, I). In this case F is given by an
algebraic formula. While many other functions of several variables also have formulas – and they
are extremely useful – not all functions do. The sunrise function, for example, might be given by
a table that shows the time of sunrise for different days of the year and different latitudes.

As a technical matter it is important to note that the input variables S and I of the function
F (S, I) above appear in a particular order, and that order is part of the definition of the function.
For example, F (1, 0) = 0, but F (0, 1) = �1/14. (Do you see why? Work out the calculations
yourself.)

Parameters. Suppose we rewrite the rate equation for I
0, replacing .00001 and 1/14 with the

general values a and b:
I
0 = aSI � bI.

This makes it clear that I
0 depends on a and b, too. But note that a and b are not variables in

quite the same way that S and I are. For example, a and b will vary if we switch from one disease
to another or from one population to another. However, they will stay fixed while we consider
a particular disease in a particular population. By contrast, S and I will always be treated as
variables. We call a quantity like a or b a parameter.

To emphasize that I 0 depends on the parameters as well as S and I, we can write I
0 as the output

of a new function
I
0 = I

0(S, I, a, b) = aSI � bI

whose input is the set of four variables (S, I, a, b), in that order. The variables S, I, and R

must also depend on the parameters, too, and not just on t. Thus, we should write S(t, a, b), for
example, instead of simply S(t). We implicitly used the fact that S, I, and R depend on a and b

when we discovered there was a threshold value ST for an epidemic.

There are even more parameters lurking in the SIR problem. To uncover them, recall that we
needed two pieces of information to estimate S, I, and R over time:

(1) the rate equations;
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(2) the initial values S(0), I(0), and R(0).

We used S(0) = 45,400, I(0) = 2,100, and R(0) = 2,500 in the text, but if we had started with
other values then S, I, and R would have ended up being different functions of t. Thus, we should
really write

S = S(t, a, b, S(0), I(0), R(0))

to tell a more complete story about the inputs that determine the output S. Most of the time,
though, we do not want to draw attention to the parameters; we usually write just S(t).

In our study of the SIR model, it was natural not to separate functions that have one input
variable from those that have several. This is the pattern we shall follow in the rest of the course.
In particular, we will want to deal with parameters, and we will want to understand how the
quantities we are studying depend on those parameters.

Exercises

Part 1: Functions: evaluation, composition, domain (Exercises 1–4)

The next four exercises refer to these functions:

c(x, y) = 17 a constant function
j(z) = z the identity function
r(u) = 1/u the reciprocal function

D(p,q) = p� q the difference function
s(y) = y

2 the squaring function
`(x) = 3� x a linear function

Q(v) =
2v + 1

3v � 6
a rational function

H(x) =

8
><

>:

5 if x < 0

x
2 + 2 if 0  x < 6

29� x if 6  x

a “piecewise” function

T (x, y) = r(x) +Q(y)

1. Determine the following values:

c(5,� 3) s(17) c(a,b) j(u2 + 1)

j(c(3,� 5)) `(1.1) r(1/17) Q(0)

Q(2) Q(3/7) D(5,� 3) D(�3,5)

H(1) H(7) `(4) H(H(H(�3)))

r(Q(3)) Q(r(3)) T (3, 7) T (s(2),j(3))

r(s(�4)) r(r(r(r(r(u))))) `(whatever) D(mellow, yellow)
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2. True or false. Give reasons for your answers: if you say true, explain why; if you say false,
give an example that shows why it is false.

(a) For every non-zero number x, r(r(x)) = j(x).

(b) c(⇡,� 965.32) = j(17).

(c) If a > 1, then s(a) > 1.

(d) If a > b, then s(a) > s(b).

(e) For all real numbers a and b, s(a+ b) = s(a) + s(b).

(f) For all real numbers x, s(r(x)) = r(s(x)).

(g) For all real numbers x, s(`(x)) = `(s(x)).

(h) For all real numbers a, b, and c, D(D(a,b),c)) = D(a,D(b,c)).

3. Find all numbers x for which Q(x) = r(Q(x)).

4. Recall that the natural domain of a function f is the largest possible set of real numbers x

for which f(x) is defined. For example, the natural domain of r(x) = 1/x is the set of all non-zero

real numbers.

(a) Find the natural domains of Q and H.

(b) Find the natural domains of P (z) = Q(r(z)); R(v) = r(Q(v)).

(c) What is the natural domain of the function W (t) =

r
1� t

2

t2 � 4
?

Part 2: Graphing functions using software (like Sage) (Exercises 5–13)

Exercises 5–13 are intended to give you some experience using a “graphing package” on a computer.
This is a program that will draw the graph of a function y = f(x) whose formula you know. You
must type in the formula, using the following symbols to represent the basic arithmetic operations:

to indicate type
addition +

subtraction -
multiplication *

division /
an exponent ^

The caret “ ^ ” appears above the “6” on a keyboard (Shift-6).

Here is an example:
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to enter: type:
7x5 � 9x2

x3 + 1
(7*x^5 - 9*x^2)/(x^3 + 1)

The parentheses you see here are important. If you do not include them, the computer will
interpret your entry as

7x5 � 9x2

x3
+ 1 = 7x5 � 9

x
+ 1 6= 7x5 � 9x2

x3 + 1
.

In some graphing packages, you do not need to use * to indicate a multiplication. If this is true for
the package you use, then you can enter the fractional expression above in the somewhat simpler
form

(7x^5 - 9x^2)/(x^3 + 1).

To do the following exercises, follow the specific instructions for the graphing package you are
using. (In Sage, for example, you do need to use * to indicate multiplication. Sage will not
understand 7x; you would need to type in 7*x.)

5. Graph the following functions. Put labels and scales on the axes.

(a) y = 3x� 1; b) y = 600� x
3.

6. Sketch the graph of each of the following functions. Put labels and scales on the axes. For
each graph that you draw, indicate (i) its y-intercept; and (ii) its x-intercept(s).

For part (d) you will need the quadratic formula

x =
�b±

p
b2 � 4ac

2a

for the roots of the quadratic equation ax
2 + bx+ c = 0.

(a) y = x
2

(b) y = x
2 + 1

(c) y = (x+ 1)2

(d) y = 3x2 + x� 1

7. Graph the function f(x) = .6x+ 2 on the interval �4  x  4.

(a) What is the y-intercept of this graph? What is the x-intercept?

(b) Read from the graph the value of f(x) when x = �1 and when x = 2. What is the differ-
ence between these y values? What is the difference between the x values? According to these
differences, what is the slope of the graph? According to the formula, what is the slope?

8. Graph the function f(x) = 1� 2x2 on the interval �1  x  1.
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(a) What is the y-intercept of this graph? The graph has two x-intercepts; use algebra to find
them.

You can also find an x-intercept using the computer. The idea is to magnify the graph near the
intercept until you can determine as many decimal places in the x coordinate as you want. For
a start, graph the function on the interval 0  x  1. You should be able to see that the graph
on your computer monitor crosses the x-axis somewhere around .7. Regraph f(x) on the interval
.6  x  .8. You should then be able to determine that the x-intercept lies between .70 and .71.
This means x = .7. . . ; that is, you know the location of the x-intercept to one decimal place of
accuracy.

(b) Regraph f(x) on the interval .70  x  .71, to get two decimal places of accuracy in the
location of the x-intercept. Continue this process until you have at least 4 places of accuracy.
What is this x-intercept, to four places?

9. The following exercise lets you review the trigonometric functions and explore them using
computer graphing.

(a) Graph the function f(x) = sin(x) on the interval �2  x  10.

(b) What are the x-intercepts of sin(x) on the interval �2  x  10? Determine them to two
decimal places accuracy.

(c) What is the largest value of f(x) on the interval �2  x  10? Which value of x makes f(x)
largest? Determine x to two decimal places accuracy.

(d) Regraph f(x) on the small interval �0.01  x  0.01. Describe what you see. Estimate the
slope of this graph at x = 0.

(e) Graph the function f(x) = cos(x) on the domain 0  x  14. On the same set of axes, graph
the function g(x) = cos(2x).

(f) How far apart are the x-intercepts of f(x)? How far apart are the x-intercepts of g(x)?

(g) The graph of g(x) has a pattern that repeats. How wide is this pattern? The graph of f(x)
also has a repeating pattern; how wide is it?

(h) Compare the graphs of f(x) and g(x) to one another. In particular, can you say that one of
them is a stretched or compressed version of the other? Is the compression (or stretching) in the
vertical or the horizontal direction?

(i) Construct a new function h(x) whose graph is the same shape as the graph of g(x) = cos(2x),
but make the graph of h(x) twice as tall as the graph of g(x). [A suggestion: either deduce what
h(x) should be, or make a guess. Then test your choice on the computer. If your choice doesn’t
work, think how you might modify it, and then test your modifications the same way.] Graph h

on the same set of axes as you did f and g.

10. The aim here is to find a solution to the equation sin x = cos(3x). There is no purely algebraic

procedure to solve this equation. Because the sine and cosine are not defined by algebraic formulas,
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this should not be particularly surprising. (Even for algebraic equations, there are only a few very
special cases for which there are formulas like the quadratic formula. In chapter 5 we will look at
a method for solving equations when formulas can’t help us.)

(a) Graph the two functions f(x) = sin(x) and g(x) = cos(3x) on the interval 0  x  1.

(b) Find a solution of the equation sin(x) = cos(3x) that is accurate to six decimal places.

(c) Find another solution of the equation sin(x) = cos(3x), accurate to four decimal places.
Explain how you found it.

11. Use a graphing program to make a sketch of the graph of each of the following functions. In
each case, make clear the domain and the range of the function, where the graph crosses the axes,
and where the function has a maximum or a minimum.

a) F (w) = (w � 1)(w � 2)(w � 3) b) Q(a) =
1

a2 + 5

c) E(x) = x+
1

x
d) e(x) = x� 1

x

e) g(u) =

r
u� 1

u+ 1
f) M(u) =

u
2 � 2

u2 + 2

12. Graph, on the same set of axes, the following three functions:

f(x) = 2x, g(x) = 3x, h(x) = 10x.

Use the domain �1  x  1.

(a) Which function has the largest value when x = �1?

(b) Which is climbing most rapidly when x = 0?

(c) Magnify the picture at x = 0 by resetting the size of the domain to �0.01  x  0.01.
Describe what you see. Estimate the slopes of the three graphs at x = 0.
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