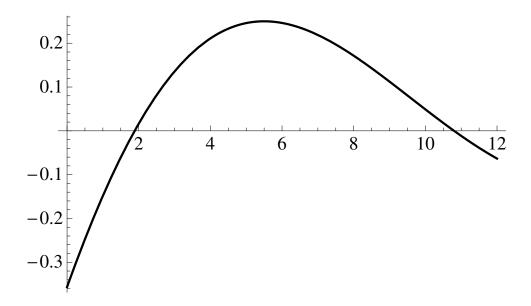
## Homework #9: Due 1 PM Thursday, April 16

- 1. If  $\sum b_n(x-2)^n$  converges at x=0 but diverges at x=7, what is the largest possible interval of convergence of this series? What's the smallest possible?
- 2. (a) Write down the second degree Taylor polynomial  $P_2(x)$  approximating

$$f(x) = \ln(1 + x(1 - x))$$


near x = 0.

- (b) Use your result from part (a) to approximate  $\ln(1.09)$ . Hint: x = 0.1.
- (c) What does Taylor's inequality say about the error in the approximation you found in part (b)? You should find it useful to note that

$$f'''(x) = \frac{2(2x-1)(x^2-x+4)}{(x^2-x-1)^3},$$

and that f'''(x) is a decreasing function on the interval (0,0.1).

3. Consider the function y = f(x) sketched below.



Suppose f(x) has Taylor series

$$f(x) = a_0 + a_1(x-4) + a_2(x-4)^2 + a_3(x-4)^3 + \dots$$

about x = 4.

- (a) Is  $a_0$  positive or negative? Please explain.
- (b) Is  $a_1$  positive or negative? Please explain.
- (c) Is  $a_2$  positive or negative? Please explain.

- 4. How many terms of the Taylor series for ln(1+x) centered at x=0 do you need to estimate the value of ln(1.4) to three decimal places?
- 5. Find the integral and express the answer as an infinite series.

$$\int \frac{e^x - 1}{x} \, dx$$

6. Using series, evaluate the limit

$$\lim_{x \to 0} \frac{\sin x - x}{x^3}.$$

- 7. Use Taylor's inequality for  $P_n(x)$  to find a reasonable bound for the error in approximating the quantity  $e^{0.60}$  with a third degree Taylor polynomial for  $e^x$  centered at x = 0.
- 8. Consider the error in using the approximation  $\sin \theta \approx \theta \theta^3/3!$  on the interval [-1, 1]. Where is the approximation an overestimate? Where is it an underestimate?
- 9. Find the Taylor series around x = 0 for

$$\cosh x = \frac{e^x + e^{-x}}{2}.$$

(Your answer should involve only even powers of x.)

10. Suppose the series

$$\sum_{n=5}^{\infty} C_n (x-3)^n$$

converges when x = 0 but diverges when x = 9. For each of the following values of x, determine whether the series converges or diverges there, or if there's not enough information to say. Explain each of your answers briefly.

- (a) x = 1
- (b) x = -5
- (c) x = -2