BRIEF intro to fourier analysis. GOAL! to investigate Fourier's 1807 claim: "there is no function... which cannot be expressed by a trigonometric series."

Part I: complex numbers.

Throughout, X, X, X, Y, U, V denote arbitrary real numbers.

Definition 1.

(a) Let i denote a square root of -1, so i=1. A complex number is a quantity xtiy. The set of all complex numbers is denoted C. Geometrically, we think of C as the usual xy-plane IR^2 : that is, we identify $x+iy \in \mathbb{C}$ with the point $(x,y)\in IR^2$. In particular, since i=0+1i, we identify i with (0,1).

- (b) Let z = x + iy & C. Then:
 - · We call x the <u>real part</u> of z, denoted Re z, and call y the <u>imaginary part</u> of z, denoted Im z.
- The modulus |z| is the distance from z to (0,0). So $|z| = \sqrt{x^2 + y^2}$. Also, the orgle that z makes with the positive x-axis is called the argument of z, denoted Arq z. We assume Arq ZE (-Ti, Ti). Finally, we denote by \overline{z} the reflection of \overline{z} about the x-axis. So $\overline{z} = x$ -iy. We call \overline{z} the complex conjugate of z.

(c) We define addition and multystication in C by way of the operations on IR, keeping in mind that $i^2 = -1$: (x+iy)+(u+iv) = (x+u)+i(y+v); (x+iy)(u+iv) = xu+x(iv)+iyu+i(y)(iv)= (xu-yy)+ i(xy+yu).

Exercise 1: Using the above definitions, show (a) z+ == 2 Rez; z-== 2 i Imz; (b) ZZ= |Z/3

(c) If z = 0 then the unique complex number z-1 (also written /z) such that zz-1= z-1z=1 is given by $Z^{-1} = (x-iy)/(x^2+y^2)$.

Part II: the function e. Definition: if x ElR, we define the complex exponential function ex by

e = cosx+isin x.

Theorem 1: properties of e. We have:

(a) |eix |=1.

(a) $|e^{-1}$. (b) $e^{(x_1e^{ix_2}} = e^{i(x_1+x_2)}$. (c) $1/e^{ix} = e^{-ix}$ (where e^{-ix} means e^{-ix}). (d) $(e^{ix})^n = e^{inx}$ for $n \in \mathbb{N}$. (e) $e^{in\pi} = (-1)^n$ for $n \in \mathbb{N}$.

 $\frac{\partial_{root}}{\partial x} = \frac{\partial x}{\partial x} = \frac{\partial x}{\partial$

 $= cosx_1 cosx_2 + i sinx_2 cosx_2 + i cosx_1 sinx_2$ $+ i^2 sin x_3 sin x_2$ $= (cosx_3 cosx_2 - sin x_3 sinx_2)$ $+ i (sinx_3 cosx_2 + cosx_3 sinx_2)$ $+ i (sinx_3 cosx_2 + i sin(x_3 + x_2)$ $+ cos(x_3 + x_2) + i sin(x_3 + x_2)$ $+ cos(x_4 + x_2) + i sin(x_3 + x_2)$ $+ cos(x_4 + x_2) + i sin(x_3 + x_2)$ $+ cos(x_4 + x_2) + i sin(x_3 + x_2)$ $+ cos(x_4 + x_2) + i sin(x_3 + x_2)$ $+ cos(x_4 + x_2) + i sin(x_3 + x_2)$ $+ cos(x_4 + x_2) + i sin(x_3 + x_2)$ $+ cos(x_4 + x_2) + i sin(x_3 + x_2)$ $+ cos(x_4 + x_2) + i sin(x_3 + x_2)$ $+ cos(x_4 + x_2) + i sin(x_3 + x_2)$ $+ cos(x_4 + x_2) + i sin(x_3 + x_2)$ $+ cos(x_4 + x_2) + i sin(x_3 + x_2)$ $+ cos(x_4 + x_2) + i sin(x_3 + x_2)$ $+ cos(x_4 + x_2) + i sin(x_3 + x_2)$ $+ cos(x_4 + x_2) + i sin(x_3 + x_2)$ $+ cos(x_4 + x_2) + i sin(x_3 + x_2)$

Parts (c)(d)(e): this is Exercise 2.

Part III: periodic functions.

Definition 2. Let P>O.

A function $f: \mathbb{R} \to \mathbb{R}$ is said to be <u>P-periodic</u> if $f(x+p) = f(x) \ \forall \ x \in \mathbb{R}$.

A P-periodic function is one whose graph repeats itself every P units.

For simplicity, let's focus on 2π -periodic functions. For example, let $n \in \mathbb{Z}$. Then the function p_n defined by $p_n(x) = \cos(nx)$ is 2π -periodic, since

 $p_n(x+2\pi) = \cos(n(x+2\pi))$ $= \cos(nx+2\pi n) = \cos(nx) = p_n(x).$

Similarly, $q_n(x) = \sin(nx)$ and $e_n(x) = e$ $= \cos(nx) + i \sin(nx) define 2\pi - periodic functions.$

Now let f be 2T-periodic. If Fourier was right, and f has a trigonometric series, then it stands to reason that the trigonometric functions in that series are 2T-periodic too. So, maybe, f has an expression of the form

 $f(x) = \sum_{n \in \mathbb{Z}} c_n(f) e_n(x) = \sum_{n \in \mathbb{Z}} c_n(f) e^{inx}$ $= \sum_{n \in \mathbb{Z}} c_n(f) \left[cos(nx) + i sin(nx) \right], \quad (x)$

for appropriate numbers $c_n(f) \in \mathbb{R}$ (or C).

More on (x) next time.