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Chapter 5: Limits of functions.

Definition 5.1.1. Let f : D → R and let c be an accumulation point of D. We say that a real
number L is a limit of f at c, if for each ε > 0 there exists a δ > 0 such that |f(x)−L| < ε whenever
x ∈ D and 0 < |x− c| < δ.

Theorem 5.1.8. Let f : D → R and let c be an accumulation point of D. Then limx→c f(x) = L
iff for every sequence (sn) in D that converges to c with sn 6= c for all n, the sequence (f(sn))
converges to L.

Corollary 5.1.9. If f : D → R and c is an accumulation point of D, then f can have only one
limit at c.

Definition 5.2.1. Let f : D → R and let c ∈ D. We say f is continuous at c if for every ε > 0
there exists a δ > 0 such that |f(x)− f(c)| < ε whenever x ∈ D and |x− c| < δ.

Theorem 5.2.2. Let f : D → R and let c ∈ D. Then the following three conditions are
equivalent: (a) f is continuous at c. (b) If (xn) is any sequence in D such that (xn) converges to
c, then limn→∞ f(xn) = f(c). (c) For every neighborhood V of f(c) there exists a neighborhood U
of c such that f(U ∩D) = V . Furthermore, if c is an accumulation point of D, then the above are
all equivalent to: (d) f has a limit at c and limx→c f(x) = f(c).

Theorem 5.3.2. Let D be a compact subset of R and suppose that f : D → R is continuous.
Then f(D) is compact.

Corollary 5.3.3. Let D be a compact subset of R and suppose that f : D → R is continuous.
Then f assumes minimum and maximum values on D. That is, there exist points x1 and x2 in D
such that f(x1) ≤ f(x) ≤ f(x2) for all x ∈ D.

Chapter 6: Differentiation.

(It’s assumed that you know the definition of the derivative, as well as the rules for differentiating
sums of two functions, and constants times functions, as well as the product, quotient, and chain
rules.)

Theorem 6.1.6. If f : I → R is differentiable at a point c ∈ I, then f is continuous at c.

Theorem 6.2.1. If f is differentiable on an open interval (a, b) and if f assumes its maximum or
minimum at a point c ∈ (a, b), then f ′(c) = 0.

Theorem 6.2.2. (Rolle’s Theorem) Let f be a continuous function on [a, b] that is differentiable
on (a, b) and such that f(a) = f(b). Then there exists at least one point c in (a, b) such that
f ′(c) = 0.

Theorem 6.2.3. (Mean Value Theorem) Let f be a continuous function on [a, b] that is differen-
tiable on (a, b). Then there exists at least one point c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
.

Theorem 6.3.2. (l’Hôpital’s Rule) Let f and g be continuous on [a, b] and differentiable on (a, b).
Suppose that c ∈ [a, b] and that f(c) = g(c) = 0. Suppose also that g′(x) 6= 0 for x ∈ U , where U
is the intersection of (a, b) and some deleted neighborhood of c. If limx→c(f

′(x)/g′(x)) = L then
limx→c(f(x)/g(x)) = L.

Chapter 7: Integration.

(It’s assumed that you know the definition of a partition P , of upper and lower sums L(f, P ) and
U(f, P ) corresponding to a bounded function f and a partition P on [a, b], of a refinement of a

partition, of upper and lower integrals U(f) and L(f), and of the integral
∫ b
a f =

∫ b
a f(x) dx.)

Theorem 7.1.4. Let f be a bounded function on [a, b]. If P and Q are partitions of [a, b] and Q
is a refinement of P , then

L(f, P ) ≤ L(f,Q) ≤ U(f,Q) ≤ U(f, P ).
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Theorem 7.1.6. Let f be a bounded function on [a, b]. Then L(f) ≤ U(f).

Theorem 7.1.9. Let f be a bounded function on [a, b]. Then f is integrable iff for each ε > 0
there exists a partition P of [a, b] such that U(f, P )− L(f, P ) < ε.

Theorem 7.2.1. If f is monotone on [a, b], then f is integrable on [a, b].

Theorem 7.2.2. If f is continuous on [a, b], then f is integrable on [a, b].

Corollary 7.2.8. Let f be integrable on [a, b]. Then |f | is integrable on [a, b] and
∣∣ ∫ b
a f
∣∣ ≤ ∫ ba |f |.

Theorem 7.3.1. (The Fundamental Theorem of Calculus I) Let f be integrable on [a, b]. For each
x ∈ [a, b], let F (x) =

∫ x
a f(t) dt. If f is continuous at c ∈ [a, b], then F is differentiable at c and

F ′(c) = f(c).

Theorem 7.3.2. (The Fundamental Theorem of Calculus II) If f is differentiable on [a, b] and f ′

is integrable on [a, b], then
∫ b
a f
′ = f(b)− f(a).

Chapter 8. Infinite series.

(It’s assumed that you know the definition of an infinite series
∑
an as the limit of the sequence of

partial sums of the sequence (an), and that you know what it means for a series to be convergent,
conditionally convergent, absolutely convergent, or divergent.)

Theorem 8.1.5. (nth Term Test or Divergence Test) If
∑
an is a convergent series, then lim an = 0.

Example 8.1.7. (Geometric Series Test) The series
∑∞

n=0 r
n converges to 1/(1− r) if |r| < 1 and

diverges if |r| ≥ 1.

Theorem 8.2.1. (Comparison Test) Let
∑
an and

∑
bn be infinite series of nonnegative terms.

Then (a) If
∑
an converges and 0 ≤ bn ≤ an for all n, then

∑
bn converges. (b) If

∑
an diverges

and 0 ≤ an ≤ bn for all n, then
∑
bn diverges.

Theorem 8.2.7. (Ratio Test) Let
∑
an be a series of nonzero terms. (a) If lim |an+1/an| < 1,

then the series converges absolutely. (b) If lim |an+1/an| > 1, then the series diverges. (c) If
lim |an+1/an| = 1, then the test gives no information about convergence or divergence.

Theorem 8.2.13. (Integral Test) Let f be a continuous function defined on [1,∞), and suppose
that f is positive and decreasing. Then the series

∑
f(n) converges iff

lim
k→∞

∫ k

1
f(x) dx

exists as a real number.

Theorem 8.2.16. (Alternating Series Test) If (an) is a decreasing sequence of positive numbers
and lim an = 0, then the series

∑
(−1)nan converges.

Fourier series.

Basic Definitions. If z = x + iy is a complex number, with x, y ∈ R and i2 = −1, then we call
x the real part of z, denoted Re z; we call y the imaginary part of z, denoted Im z; we call
x− iy the complex conjugate of z, denoted z; we call

√
x2 + y2 the modulus of z, denoted |z|;

we call the angle (in (−π, π]) that z makes with the positive x axis the argument of z, denoted
Arg z. And for z 6= 0 + i0 = 0, we denote by z−1 or 1/z the unique complex number such that
zz−1 = z−1z = 1.

Complex exponentials. We write eix for the complex number cosx + i sinx. We have: (a)
|eix| = 1. (b) 1/eix = e−ix. (c) eix1eix2 = ei(x1+x2). (d)

(
eix
)n

= einx for n ∈ Z. (e) einπ = (−1)n

for n ∈ Z.

Fourier series. If f is 2π-periodic (meaning f(x + 2π) = f(x) for all x), f is continuous, and f ′

is piecewise continuous, then for all x ∈ R,

f(x) =
∑
n∈Z

cn(f)einx where cn(f) =
1

2π

∫ π

−π
f(x)e−inx dx.


