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I. Some definitions concerning sets and functions.

(i) Let A,B be sets. We define A ∪ B = {x : x ∈ A or x ∈ B}, A ∩ B = {x : x ∈ A and x ∈ B},
A\B = {x ∈ A : x ∕∈ B}.
(ii) Let A and B be sets. A function from A to B is a nonempty relation f ⊆ A×B that satisfies
the following two conditions: (a) Existence: for all a ∈ A, ∃b ∈ B : (a, b) ∈ f . (b) Uniqueness: If
(a, b) ∈ f and (a, c) ∈ f , then b = c.
If f is a function from A to B and (a, b) ∈ f , then we write f(a) = b.

(iii) If f is a function from A to B, then we write f : A → B, and A is called the domain of f , B
is called the codomain of f , and the set {b ∈ B : ∃a ∈ A : f(a) = b} is called the range of f .

(iv) If f : A → B and S ⊆ B, then we define f−1(S) to be the set {a ∈ A : f(a) ∈ S}.
(v) A function f : A → B is called injective (or one-to-one) if, for all a and a′ in A, f(a) = f(a′)
implies that a = a′.

(vi) A function f : A → B is called surjective (or onto) if, ∀b ∈ B, ∃a ∈ A : f(a) = b (so that B
equals the range of f).

(vii) A function f : A → B is called bijective if it is both injective and surjective.

II. Axioms of the real numbers.

“Addition” Axioms
A1. ∀x, y ∈ R, x + y ∈ R and, if x = w and
y = z, then x+ y = w + z.

A2. ∀x, y ∈ R, x+ y = y + x.

A3. ∀x, y, z ∈ R, x+ (y + z) = (x+ y) + z.

A4. There is a unique real number 0 such that
x+ 0 = x, for all x ∈ R.

A5. For each x ∈ R, there is a unique real
number −x such that x+ (−x) = 0.

“Multiplication” Axioms
M1. ∀x, y ∈ R, x · y ∈ R and, if x = w and
y = z, then x · y = w · z.

M2. ∀x, y ∈ R, x · y = y · x.

M3. ∀x, y, z ∈ R, x · (y · z) = (x · y) · z.

M4. There is a unique real number 1 such that
1 ∕= 0 and x · 1 = x, for all x ∈ R.

M5. For each x ∈ R with x ∕= 0, there is a
unique real number 1/x such that x · (1/x) = 1.

We also write x−1 or
1

x
in place of 1/x.

DL. For all x, y, z ∈ R, x · (y + z) = x · y + x · z.

“Order” Axioms
O1. ∀x, y ∈ R, exactly one of the relations
x = y, x > y, or x < y holds (trichotomy
law).

O2. ∀x, y, z ∈ R, if x < y and y < z, then
x < z.

O3. ∀x, y, z ∈ R, if x < y, then x+ z < y + z.

O4. ∀x, y, z ∈ R, if x < y and z > 0, then
x · z < y · z.

“Completeness” Axiom
Every nonempty subset S of R that is bounded
above has a least upper bound. That is, supS
exists as a real number.

III. The definition of a limit. Let s ∈ R and let (sn) a sequence of real numbers. We say that
the sequence (sn) converges to s, and write

lim
n→∞

sn = s, or lim sn = s, or sn → s,

if
∀ε > 0, ∃N ∈ N : n ≥ N ⇒ |sn − s| < ε.
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IV. Some definitions concerning the topology of R.

(i) Let S ⊆ R. (a) The supremum of S, denoted supS, is the least upper bound for S (provided
an upper bound for S exists). (a) The infemum of S, denoted inf S, is the greatest lower bound
for S (provided a lower bound for S exists).

(ii) A neighborhood of a point x ∈ R is a set N(x, ε) = (x− ε, x+ ε), for some ε > 0.

(iii) A deleted neighborhood of a point x ∈ R is a set N∗(x, ε) = (x − ε, x) ∪ (x, x + ε), for
some ε > 0.

(iv) An interior point of set S ⊆ R is a point x ∈ R such that, for some ε > 0, N(x, ε) ⊆ S. The
set of all interior points of S is denoted intS.

(v) A boundary point of set S ⊆ R is a point x ∈ R such that, for all ε > 0, N(x, ε) ∩ S ∕= ∅
and N(x, ε) ∩ R\S ∕= ∅. The set of all boundary points of S is denoted bdS.

(vi) A set S ⊂ R is closed if bdS ⊆ S. A set S ⊆ R is open if R\S is closed.

(vii) An accumulation point of set S ⊆ R is a point x ∈ R such that, for every ε > 0,
N∗(x, ε) ∩ S ∕= ∅. The set of all accumulation points of S is denoted S′.

(viii) An isolated point of set S ⊆ R is a point x ∈ R such that x ∈ S but x ∕∈ S′. The set of all
isolated points of S simply the set S\S′.

(ix) A set S ⊆ R is called compact if every open cover of S (that is, every collection {Tα : α ∈ A}
of open sets Tα whose union contains S) has a finite subcover (meaning a collection of finitely many
of the Tα’s such that the union of these finitely many Tα’s contains S).

(x) The closure clS of a set S ⊆ R is defined by clS = S ∪ S′.

V. Some theorems that you may use without proof (but you must cite the appropriate
theorem at any point where it is needed).

(i) Theorem 3.1.2: The Principle of Mathematical Induction. Let An be a statement
regarding a natural number n. Suppose that (a) A1 is true, and (b) Ak implies Ak+1, for all k ∈ N.
Then An is true for all integers n.

(ii) Theorem 3.3.9: The Archimedean Property of R. The set N of natural numbers is
unbounded above in R.
(iii) Theorem 3.3.10: Each of the following is equivalent to the Archimedean Property. (a) For
each z ∈ R, there exists an n ∈ N such that n > z. (b) For each x > 0 and for each y ∈ R, there
exists an n ∈ N such that nx > y. (c) For each x > 0, there exists an n ∈ N such that 0 < 1/n < x.

(iv) Theorem 3.3.13: The Density of Q in R. If x and y are real numbers with x < y, then
there exists a rational number r with x < y < r.
(v) Theorem 3.4.7. Let S be a subset of R. (a) S is open iff S = intS. (b) S is closed iff its
complement R\S is open.
(vi) Theorem 3.4.10 and Corollary 3.4.11. (a) The union of any collection of open sets is
open. (b) The intersection of any finite collection of open sets is open. (c) The intersection of any
collection of closed sets is closed. (d) The union of any finite collection of closed sets is closed.

(viii) Theorem 3.4.17. Let S be a subset of R. (a) S is closed iff S′ ⊆ S. (b) clS is closed. (c)
S is closed iff S = clS. (d) clS = S ∪ bdS.

(ix) Theorem 3.5.5 (Heine-Borel): A subset S of R is compact iff S is closed and bounded.

(x) Theorem 3.5.6 (Bolzano-Weierstrass): If S ⊆ R is bounded and contains infinitely many
points, then there is at least one point in R such that x ∈ S′ (that is, such that x is an accumulation
point of S).


