
Math 3001-001: Analysis I Spring 2023

Take-Home Midterm Exam: SOLUTIONS

1. Recall that, by definition, the closure clS of a set S ⊂ R is defined by clS = S ∪ S ′,
where S ′ is the set of accumulation points of S.

Prove Theorem 3.4.17(c): clS = S ∪ bdS. Do so by showing that (a) cl(S) ⊆ S ∪ bdS

and (b) S ∪ bdS ⊆ cl(S). Use only the definitions of clS, S ′, and bdS, in terms of

neighborhoods, deleted neighborhoods, and so on. (Of course, you can use the definition

of the union of two sets as well.)

Proof. (a) We wish to show that S ∪ S ′ ⊆ S ∪ bdS. So let x ∈ S ∪ S ′. Then x ∈ S or

x ∈ S ′, by definition of union. If x ∈ S, then we’re done, since then certainly x ∈ S∪bdS,
by definition of union. If not, then x ∈ S ′, again by definition of union. In this case, given
ε > 0, we know that N∗(x, ε) intersects S, by definition of accumulation point. Let y be a

point in this intersection. Then y ∈ N∗(x, ε), and since N∗(x, ε) ⊆ N(x, ε), we also have

y ∈ N(x, ε). Since y ∈ S, then, we have y ∈ N(x, ε) ∩ S. That is, N(x, ε) intersects S.

Moreover, N(x, ε) also intersects R\S, since we’re assuming x 6∈ S, so x ∈ N(x, ε)∩R\S.

So N(x, ε) intersects both S and R\S. This is true for arbitrary ε > 0, so x is a boundary
point of S, by definition of boundary point. So x ∈ bdS, and consequently x ∈ S ∪ bdS,
by definition of union. So S ∪ S ′ ⊆ S ∪ bdS.

(a) We wish to show that S∪bdS ⊆ S∪S ′. So let x ∈ S∪bdS. Then x ∈ S or x ∈ bdS,

by definition of union. If x ∈ S, then we’re done, since then certainly x ∈ S ∪ S ′, by
definition of union. If not, then x ∈ bdS, again by definition of union. In this case,
given ε > 0, we know that N(x, ε) intersects both S and R\S, by definition of boundary

point. Let y be a point in N(x, ε) ∩ S. Then y ∈ S, so y 6= x, since we’re assuming

x 6∈ S. So y ∈ N(x, ε)\{x} = N∗(x, ε). Since, again, y ∈ S, we have y ∈ N∗(x, ε)∩ S. So

N∗(x, ε) ∩ S 6= ∅. This is true for arbitrary ε > 0, so x is an accumulation point of S, by

definition of accumulation point. So x ∈ S ′, and consequently x ∈ S ∪ S ′, by definition
of union. So S ∪ bdS ⊆ S ∪ S ′.

Since S ∪ bdS ⊆ S ∪ S ′ and S ∪ S ′ ⊆ S ∪ bdS, we have S ∪ bdS = S ∪ S ′ = clS, the
last equality by definition of clS.
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2. For n ∈ N , define

sn = 3− 4

n3
.

(a) Show that (sn) is a Cauchy sequence, using only Definition 4.3.9 from your text. That
is: don’t use any limit laws like “the limit of a sum is the sum of the corresponding
limits,” and don’t use any results like Lemma 4.3.10 or Theorem 4.3.12 that give
other criteria for a sequence to be Cauchy.

Solution. Let ε > 0. Let N be any integer greater than 2/ 3
√
ε. Then for m,n ≥ N ,

we have

|sn − sm| =
∣∣∣∣3− 4

n3
−
(

3− 4

m3

)∣∣∣∣ =

∣∣∣∣ 4

m3
− 4

n3

∣∣∣∣
≤
∣∣∣∣ 4

m3

∣∣∣∣+

∣∣∣∣ 4

n3

∣∣∣∣ =
4

m3
+

4

n3
<

4

(2/ 3
√
ε)3

+
4

(2/ 3
√
ε)3

=
ε

2
+
ε

2
= ε.

So by definition of Cauchy sequence, (sn) is Cauchy.

(b) Show that the sequence (sn) from part (a) of this problem converges to 3. Please
use only Definition 4.1.2 from your text. That is: don’t use any limit laws like “the
limit of a sum is the sum of the corresponding limits,” and don’t use any results
like Theorem 4.3.12 that give other criteria for a sequence to be convergent. (In

particular, do not use the result of part (a) of this problem.)

Solution. Let ε > 0. Let N be any integer greater than 3
√

4/ε. Then for n ≥ N ,

we have

|sn − 3| =
∣∣∣∣3− 4

n3
− 3

∣∣∣∣ =

∣∣∣∣ 4

n3

∣∣∣∣ =
4

n3
<

4

( 3
√

4/ε)3
= ε.

So by definition of limit, sn → 3.
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3. Show carefully that (0, 1) is not compact, by exhibiting an open cover C of (0, 1) that has

no finite subcover. Hint: Let C = {( 1
n
, 1) : n ∈ N}.

Some notes: (a) Please complete this problem using the given strategy; do not use the

Heine-Borel Theorem. (b) You may use without proof the fact that every finite set of

integers has maximum element, and/or the fact that, given any finite set of integers (or real

numbers), the elements of that set can be listed in increasing order. (c) Be careful about
other assumptions. For example, if your argument requires the Archimedean property of
R (see page 127 of our text), or any immediate consequences of the Archimedean property

of R (for example, Theorem 3.3.10), then please state how and where you’re using such
results.

Solution. Let C = {( 1
n
, 1) : n ∈ N}.

Let x ∈ (0, 1). By Theorem 3.3.10(c), There is an n0 ∈ N such that 0 < 1
n0
< x. But

then, since x < 1 by assumption, we have x ∈ ( 1
n0
, 1). But then x is certainly in the union

∪n∈N( 1
n
, 1). Moreover, each interval ( 1

n
, 1) is clearly open. So C is an open cover of (0, 1).

But no finite subcover of C contains (0, 1), for the following reason. Let B be a finite
subset of C. Write

B =

{(
1

n1

, 1

)
,

(
1

n2

, 1

)
, . . . ,

(
1

nk

, 1

)}
,

for some positive integer k. Let M be the largest of the integers n1, n2, . . . , nk. Then
1
M

is the smallest of the numbers 1
n1
, 1
n2
, . . . , 1

nk
. Then 1

M+1
is smaller than any of these

numbers, so 1
M+1

is not in any of the intervals in B, so 1
M+1

is not in the union of these

intervals. So we have found a cover (namely, ∪n∈N( 1
n
, 1)) of (0, 1) with no finite subcover.

So (0, 1) is not compact.
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4. Let f : R→ R be given by

f(x) =
1

2x2 + 1
.

Show that

lim
x→2

f(x) =
1

9
,

using only Definition 5.1.1 from your text. That is: don’t use any limit laws like “the
limit of a sum is the sum of the corresponding limits,” and don’t use any results like
Theorem 5.1.8 that give other criteria for determining the limit of a function.

Solution. First, let’s note that

|9(2x2 + 1)| = 9(2x2 + 1) ≥ 9 > 1,

since x2 is always ≥ 0.

Let ε > 0. Let δ = min{1, ε/10}. Then, if 0 < |x− 2| < δ, we have

∣∣∣∣f(x)− 1

9

∣∣∣∣ =

∣∣∣∣ 1

2x2 + 1
− 1

9

∣∣∣∣ =

∣∣∣∣9− (2x2 + 1)

9(2x2 + 1)

∣∣∣∣
=

∣∣∣∣ 8− 2x2

9(2x2 + 1)

∣∣∣∣ < |8− 2x2| = |2(2− x)(2 + x)|

= 2|x− 2| |x+ 2| = 2|x− 2| |x− 2 + 4| ≤ 2|x− 2| (|x− 2|+ 4)

< 2(ε/10)(1 + 4) = 10 · ε/10 = ε.

So

lim
x→2

f(x) =
1

9
,

by definition of limit.
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5. Use the Principle of Mathematical Induction (Theorem 3.1.2) to show that

n∑
k=1

1

4k2 − 1
=

1

4 · 12 − 1
+

1

4 · 22 − 1
+

1

4 · 32 − 1
+ · · ·+ 1

4n2 − 1

=
n

2n+ 1

for any positive integer n. (To be clear, you only need to show that the quantity on the
far left equals the quantity on the far right. The stuff in the middle is there just to make

it clear what the sum is that we’re looking at.) Hint: 4n3+8n2+5n+1 = (n+1)(2n+1)2,

and 4(n+ 1)2 − 1 = (2(n+ 1) + 1)(2(n+ 1)− 1).

Solution. Let An be the statement

n∑
j=1

1

4j2 − 1
=

n

2n+ 1

Is A1 true?
1

4 · 12 − 1
=

1

3
=

1

2 · 1 + 1
,

so A1 is true.
Now assume Ak:

k∑
j=1

1

4j2 − 1
=

k

2k + 1

Then

k+1∑
j=1

1

4j2 − 1
=

k∑
j=1

1

4j2 − 1
+

1

4(k + 1)2 − 1

=
k

2k + 1
+

1

4(k + 1)2 − 1

=
k(4(k + 1)2 − 1) + 1 · (2k + 1)

(2k + 1)(4(k + 1)2 − 1)
=

4k3 + 8k2 + 5k + 1

(2k + 1)(4(k + 1)2 − 1)

=
(k + 1)(2k + 1)2

(2k + 1)(2(k + 1) + 1)(2(k + 1)− 1)
=

k + 1

2(k + 1) + 1
,

so Ak+1 follows.
Since A1 is true and Ak ⇒ Ak+1 for all k ∈ N, we find by mathematical induction that
An is true for all n ∈ N.
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6. Suppose the sequence (sn) converges to some real number L. Show that the sequence (tn)
defined by

tn =
sn
n

converges to zero. Please use only Definition 4.1.2 from your text. That is: don’t use
any limit laws like “the limit of a sum is the sum of the corresponding limits;” don’t use
the squeeze law; don’t use any results like Theorem 4.3.12 that give other criteria for a
sequence to be convergent. Hint:

|tn − 0| = |tn| =
∣∣∣∣snn
∣∣∣∣ =

∣∣∣∣sn − L+ L

n

∣∣∣∣ ≤ ∣∣∣∣sn − Ln

∣∣∣∣+

∣∣∣∣Ln
∣∣∣∣.

Solution. Let ε > 0. Since sn → L, we know that there is an integer M ∈ N such that
n ≥ M ⇒ |sn − L| < ε/2. Let N be any integer larger than max{M, 2|L|/ε}. If n ≥ N ,
then by the above hint,

|tn − 0| ≤
∣∣∣∣sn − Ln

∣∣∣∣+

∣∣∣∣Ln
∣∣∣∣ =
|sn − L|

n
+
|L|
n

<
ε/2

n
+

|L|
(2|L|/ε)

≤ ε

2
+
ε

2
= ε.

Strictly speaking, since we’re dividing by |L|, these computations only hold for L 6= 0.
But note that, if L = 0, then by the hint we have, for the same N ,

n ≥ N ⇒ |tn − 0| ≤
∣∣∣∣sn − Ln

∣∣∣∣+

∣∣∣∣Ln
∣∣∣∣ =

∣∣∣∣snn
∣∣∣∣ =
|sn|
n

<
ε/2

n
< ε.

So in any case we find that, by the definition of limit, tn → 0.


