
MATH 3001: Analysis I
March 3, 2023

In-class Midterm Exam

I have neither given nor received unauthorized assistance on this exam.

Name: SOLUTIONS

Signature:

You must show your work on every problem of this exam.

If you get stuck on a problem, move on to the next one,
and then come back.

Breathe. GOOD LUCK!!

DO NOT WRITE IN THIS BOX!

Problem Points Score

1 18 pts

2 13 pts

3 30 pts

4 13 pts

5 16 pts

6 10 pts

TOTAL 100 pts



1. (18 points; 6 points each)

Mark each statement as true or false. Justify each answer: if the answer is “True,” supply a
careful proof, using definitions and theorems from your fact sheet. If the answer is “False,”
supply an explicit counterexample, and explain why it’s a counterexample.

(a) For any set S ⊆ R, bdS ∩ intS = ∅.
True. Let S ⊆ R and let x ∈ intS. By definition of interior point, there exists ε > 0
such that N(x, ε) ⊆ S. This implies that N(x, ε) ∩ (R\S) = ∅. But then x cannot be a
boundary point of S, because every neigborhood of a boundary point of S interesects both
S and R\S.

(b) Let A and B be sets. If f : A → B is a function and D is a nonempty subset of B, then

f−1(D) is a nonempty subset of A.

False. Consider the function f : R → R defined by f(x) = x2. The set D = [−2,−1] is

a nonempty subset of R, but f−1(D) is empty, since no real numbers map onto negative
numbers.

(c) For any sets S, T ⊆ R, bdS ∪ bdT = bd(S ∪ T ).

False. If S = [−2,−1] and T = [−1, 1], then S ∪ T = [−2, 1], so bd(S ∪ T ) = bd[−2, 1] =

{−2, 1}, but bdS ∪ bdT = bd[−2,−1] ∪ bd[−1, 1] = {−2,−1} ∪ {−1, 1} = {−2,−1, 1}.
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2. (13 points) Using only the definition of limit given on the fact sheet, show carefully that

lim
n→∞

4n + 3

n + 3
= 4.

Let ε > 0. Suppose N is any positive integer larger than 9/ε. Then if n ≥ N , we have∣∣∣∣4n + 3

n + 3
− 4

∣∣∣∣ =

∣∣∣∣4n + 3

n + 3
− 4

n + 3

n + 3

∣∣∣∣
=

∣∣∣∣ −9

n + 3

∣∣∣∣ =
9

n + 3
<

9

n
<

9

9/ε

= ε.

So

lim
n→∞

4n + 3

n + 3
= 4.
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3. (a) (4 points for each blank) Find the interior, boundary, accumulation points, isolated points,
and closure of the set

A = [−5, 1) ∪
{

2 +
1

n
| n ∈ N

}
.

You don’t need to justify your answers.

int A = (−5, 1)

bd A = {−5, 1, 2} ∪ {2 + 1
n
| n ∈ N}

A′ = [−5, 1] ∪ {2}

A\A′ = {2 + 1
n
| n ∈ N}

cl A = [−5, 1] ∪ {2} ∪ {2 + 1
n
| n ∈ N}

(b) (5 points) Is A open, closed, or neither? Please explain carefully, using definitions and/or
theorems from your fact sheet. A is not closed, because it does not contian the boundary
point 1 of A. Also A is not open, because it does not equal its interior. For example,
−5 ∈ A but −5 6∈ intA.)

(c) (5 points) Is A compact? Please explain carefully, using definitions and/or theorems from
your fact sheet. A is not closed so, by the Heine-Borel Theorem, it is not compact.
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4. (13 points) Use the Principle of Mathematical Induction to show that

n∑
i=1

i3 =
n2(n + 1)2

4

for all n ∈ N.
Let An be the statement

n∑
i=1

i3 =
n2(n + 1)2

4
.

Is A1 true? 13 = 1 = 12(1+1)2

4
, so A1 is true.

Now assume Ak:
k∑

i=1

i3 =
k2(k + 1)2

4
.

Then

k+1∑
i=1

i3 =
k∑

i=1

i3 + (k + 1)3

=
k2(k + 1)2

4
+ (k + 1)3

= (k + 1)2
(
k2

4
+ (k + 1)

)
= (k + 1)2

(
k2 + 4k + 4

4

)
=

(k + 1)2(k + 2)2

4
=

(k + 1)2((k + 1) + 1)2

4
.

so Ak+1 follows.
Since A1 is true and Ak ⇒ Ak+1 for all k ∈ N, we find by mathematical induction that An is
true for all n ∈ N.
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5. Fill in in the blanks (2 point per blank; there are eight blanks.)

Theorem. The set N of natural numbers is not compact.

Proof. To show N is not compact, we need to find an open cover of N with no finite subcover.

That is, we need to find a collection C of open sets such that N is contained in

the union of the sets in C, but N is not contained in the union of any finite number of sets in

C .

Let C = {In : n ∈ N}, where In is the open interval In = (n − 1
2
, n + 1

2
). Then each In is open

(since In is an open interval), and certainly

N ⊆ ∪n∈NIn

because, if n is a positive integer, then n is in the interval In . So C is an open

cover of N.

To show that C has no finite subcover of N, consider any finite set of intervals of the form

(n − 1
2
, n + 1

2
). Let’s say there are K intervals in this finite set. List them in increasing order:

that is, list them as(
n1 −

1

2
, n1 +

1

2

)
,

(
n2 −

1

2
, n2 +

1

2

)
,

(
n3 −

1

2
, n2 +

1

2

)
, . . . ,

(
nK −

1

2
, nK +

1

2

)
, (∗)

where n1 < n2 < n3 < · · · < nK . (It’s a fact that every finite set of integers can be written in

increasing order; proof omitted.) Since the integer nK + 1 is larger than nK + 1
2
, we see that the

integer nK + 1 is not in any of the intervals in (∗), and therefore, is not in the union

of these intervals.

So we’ve shown that every finite subcover of the open cover C of N fails to cover N .

In other words, we’ve found an open cover of N with no finite subcover . So N is not

compact .
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6. Consider the real numbers R, with the usual multiplication, denoted by ·, and with an “addition”

operator @ defined by

x@ y = the mean (average) of x and y =
x + y

2
.

(a) (5 points) Show that, with these definitions of addition @ and multiplication ·, Axiom DL

(the distributive law) holds. That is, show that x · (y @ z) = (x · y) @ (x · z) ∀x, y, z ∈ R.
We have

x · (y @ z) = x ·
(
y + z

2

)
=

x · y + x · z
2

,

by our definitions of · and @, and by the regular distrivutive law for the usual addition +.

On the other hand, also by these definitions,

(x · y) @ (x · z) =
x · y + x · z

2
.

So x · (y @ z) = (x · y) @ (x · z) ∀x, y, z ∈ R.

(b) (5 points) Use an explicit counterexample to show that, with this definition of addition @,

Axiom A3 (the associative law for addition) does not hold.

The associative law for @, were it to be true, would say that x@ (y @ z) = (x@ y) @ z

∀x, y, z ∈ R. But this is not the case: take, for example, x = 11, y = 3, z = 7. Then

x@ (y @ z) = 11 @ (3 @ 7) = 11 @

(
3 + 7

2

)
= 11 @ 5 =

11 + 5

2
= 8,

while

(x@ y) @ z = (11 @ 3) @ 7 =

(
11 + 3

2

)
@ 7 = 7 @ 7 =

7 + 7

2
= 7.

And 8 6= 7.
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