
MATH 3001: Analysis I HW Assignment 9: Solutions to Selected Exercises

Assignment:

Section 8.1, pages 307–308: Exercises 1, 2, 4, 5bcdgi, 9.

Section 8.2, pages 316–319: Exercises 3abdhm, 4a, 5adi, 6.

Section 8.1:

1. Mark each statement True or False. Justify each answer.

(a) The symbol
∑∞

n=1 an is used to denote the sequence of partial sums of the sequence
an. Solution: True. As it says on p. 302:

“As defined above, the symbol
∑∞

n=1 an is used in two ways: It is used to denote the
sequence (sn) of partial sums, and it is also used to denote the limit of the sequence
of partial sums, provided that this limit exists. This dual usage should not cause
confusion, since the context will make the intended meaning clear.”

(b) The symbol
∑∞

n=1 an is used to denote the limit of the sequence of partials sums of
the sequence an. Solution: True. See part (a) of this exercise, above.

2. Mark each statement True or False. Justify each answer.

(a)
∑

an converges iff lim an = 0. Solution: False. For example, the harmonic series∑
1/n diverges, even though limn→∞ an = 0.

(b) The geometric series
∑

rn converges iff |r| < 1. Solution: True. See Example 8.1.7.

4. Show that each series is divergent.

(a)
∑

(−1)n Solution: limn→∞(−1)n 6= 0, so the series diverges by the nth term test
(Theorem 8.1.5).

(b)
∑

n
2n+1

Solution: limn→∞
n

2n+1
= 1

2
6= 0, so the series diverges by the nth term test

(Theorem 8.1.5).

(c)
∑

n√
n2+1

Solution: limn→∞
n√
n2+1

= 1 6= 0, so the series diverges by the nth term

test (Theorem 8.1.5).

(d)
∑

cos nπ
2

Solution: Note that cos nπ
2

= 0 if n is odd, equals 1 if n is a multiple of 4,
and equals −1 if n is a multiple of 2 but not a multiple of 4. So limn→∞ cos nπ

2
6= 0,

so the series diverges by the nth term test (Theorem 8.1.5).

5. Find the sum of each series.



(b)
∑∞

n=3

(
1
2

)n
Solution:

∞∑
n=3

(
1

2

)n
=
∞∑
n=0

(
1

2

)n
−

2∑
n=0

(
1

2

)n
=

1

1− 1/2
−
(

1 +
1

2
+

1

4

)
= 2− 7

4
=

1

4
.

(c)
∑∞

n=0 2
(
− 1

2

)n
Solution:

∞∑
n=0

2

(
−1

2

)n
= 2

∞∑
n=0

(
−1

2

)n
= 2

1

1− (−1/2)
= 2 · 2

3
=

4

3
.

(d)
∑∞

n=1

(
− 3

4

)n
Solution:

∞∑
n=1

(
−3

4

)n
=
∞∑
n=0

(
−3

4

)n
− 1 = 2

1

1− (−3/4)
− 1 =

4

7
− 1 = −3

7
.

(g)
∑∞

n=1
1

(3n−2)(3n+1)
Solution:

∞∑
n=1

1

(3n− 2)(3n + 1)
=
∞∑
n=1

1

3

[
1

3n− 2
− 1

3n + 1

]
=

1

3
lim
k→∞

([
1

1
− 1

4

]
+

[
1

4
− 1

7

]
+

[
1

7
− 1

10

]
+ · · ·+

[
1

3k − 2
− 1

3k + 1

])
=

1

3
lim
k→∞

[
1− 1

3k + 1

]
=

1

3

[
1− lim

k→∞

1

3k + 1

]
=

1

3

[
1− 0

]
=

1

3
.

(i)
∑∞

n=1
1

n2+3n+2
Solution:

∞∑
n=1

1

n2 + 3n + 2
=
∞∑
n=1

1

(n + 1)(n + 2)
=
∞∑
n=1

[
1

n + 1
− 1

n + 2

]
= lim

k→∞

([
1

2
− 1

3

]
+

[
1

3
− 1

4

]
+

[
1

4
− 1

5

]
+ · · ·+

[
1

k + 1
− 1

k + 2

])
= lim

k→∞

[
1

2
− 1

k + 2

]
=

1

2
− lim

k→∞

1

k + 2
=

1

2
− 0 =

1

2
.

9. Determine whether or not the series
∑∞

n=1 1/(
√
n + 1 +

√
n) converges. Justify your

answer. Solution:
∞∑
n=1

1√
n + 1 +

√
n

=
∞∑
n=1

1√
n + 1 +

√
n
·
√
n + 1−

√
n√

n + 1−
√
n

=
∞∑
n=1

√
n + 1−

√
n

n + 1− n
=
∞∑
n=1

(
√
n + 1−

√
n)

= lim
k→∞

(
[
√

2−
√

1] + [
√

3−
√

2] + [
√

4−
√

3] + · · ·+ [
√
k + 1−

√
k]
)

= lim
k→∞

(
−
√

1 +
√
k + 1

)
=∞.

The limit of the partial sums does not exist as a finite number, so the series diverges.



Section 8.2:

3. Determine whether each series converges or diverges. Justify your answer.

(a)
∑

n3

3n
Solution: Converges by the ratio test, since

lim
n→∞

∣∣∣∣(n + 1)3

3n+1

/
n3

3n

∣∣∣∣ = lim
n→∞

∣∣∣∣(n + 1)3

3n+1
· 3n

n3

∣∣∣∣ =
1

3
lim
n→∞

∣∣∣∣(n + 1

n

)3∣∣∣∣ =
1

3
< 1.

(b)
∑

3n

n!
Solution: Converges by the ratio test, since

lim
n→∞

∣∣∣∣ 3n+1

(n + 1)!

/
3n

n!

∣∣∣∣ = lim
n→∞

∣∣∣∣ 3n+1

(n + 1)!
· n!

3n

∣∣∣∣ = 3 lim
n→∞

∣∣∣∣ 1

n + 1

∣∣∣∣ = 0 < 1.

(d)
∑

n!
(2n)3

Solution: Diverges by the ratio test, since

lim
n→∞

∣∣∣∣(n + 1)!

(2n+1)3

/
n!

(2n)3

∣∣∣∣ = lim
n→∞

∣∣∣∣(n + 1)!

23n+3
· 23n

n!

∣∣∣∣ = lim
n→∞

∣∣∣∣n + 1

23

∣∣∣∣ =∞.

(h)
∑

1
n
√
n+1

Solution: Converges by the comparison test and the p-series test, since

1

n
√
n + 1

<
1

n3/2

for all n ≥ 1, and
∑

1/n3/2 converges.

(m)
∑

2ne−n Solution: Converges by geometric series test, since 2ne−n = (2/e)n, and
|2/e| < 1.

4. Determine the values of a for which each series converges.

Solution: We consider the integral ∫ k

2

1

x(lnx)p
dx.

To evaluate this integral, put u = lnx. Then du = dx/x, so the integral becomes∫ ln k

ln 2

du

up
=

{
ln(k)− ln(2) if p = 1,

((ln k)1−p − (ln 2)1−p)/(1− p) if p 6= 1.

From this, we see that

lim
k→∞

∫ k

2

1

x(lnx)p
dx

exists iff p > 1. Thus, by the integral test, the series in question converges iff p > 1.

5. Determine whether each series converges conditionally, converges absolutely, or di-
verges. Justify your answer.



(a)
∑∞

n=2
(−1)n
lnn

Solution: Converges by the alternating series test. But the series does
not converge absolutely, since 1/ lnn > 1/n for all n ≥ 2, and the harmonic series

diverges. So
∑∞

n=2
(−1)n
lnn

converges conditionally.

(d)
∑ (−5)n

2n
Solution: Diverges (and therefore, by Theorem 8.2.5, does not converge

absolutely) by the geometric series test, since (−5)n/2n = (−5/2)n, and | − 5/2| > 1.

(i)
∑∞

n=2
(−1)n lnn

n
Solution: Converges by the alternating series test. But the series does

not converge absolutely, since lnn/n > 1/n for all n ≥ 2, and the harmonic series

diverges. So
∑∞

n=2
(−1)n lnn

n
converges conditionally.

6. Find an example to show that the convergence of
∑

an and the convergence of
∑

bn
do not necessarily imply the convergence of

∑
(anbn). (Compare with Exercise 8.1.11.)

Solution: If an = bn = (−1)n/
√
n, then

∑
an and

∑
bn converge by the alternating

series test, but
∑

anbn =
∑

1/n, which diverges by the p-series test.


