
MATH 3000: Analysis I HW Assignment 8: Solutions to Selected Exercises

Assignment:

Section 7.2, pages 290–292: Exercises 1, 7, 10, 11.

Section 7.3, pages 298-300: Exercises 4, 5, 10, 15, 16.

Section 7.2:

1. Mark each statement True or False. Justify each answer.

(a) If f is monotone on [a, b], then f is integrable on [a, b]. Solution: True. This is
Theorem 7.2.1.

(b) If f is integrable on [a, b], then f is continuous on [a, b]. Solution: False. Consider,
for example, the function f of Example 7.2.3. This function is integrable on [0, 1], as
shown in that example, but is not continuous on [0, 1], as shown in Example 5.2.9.

(c) If f and g are integrable on [a, b] then f + g is integrable on [a, b], and
∫ b
a
(f + g) =∫ b

a
f +

∫ b
a
g. Solution: True. This is Theorem 7.2.4(b).

7. Let f : [0, 1] → [0, 1] be the modified Dirichlet function of Example 7.2.3 and let
h : [0, 1]→ [0, 1] be the function of Example 7.1.8 (with domain restricted to [0, 1]). Find
an integrable function g : [0, 1] → [0, 1] such that h = g ◦ f , thereby showing that the
composition of two integrable functions need not be integrable.

Solution: Let

g(x) =

{
0 if x = 0,

1 if not.
.

Then g is monotone on [0, 1], so by Theorem 7.2.1, it’s integrable there. But then, if f is
the modified Dirichlet function of Example 7.2.3, and h = g ◦ f , we have

h(x) = g(f(x)) =

{
0 if f(x) = 0,

1 if not
=

{
0 if x is irrational,

1 if x is rational,

since our function f equals 0 on the irrationals in [0, 1] and is not equal to zero if x ∈ [0, 1]
is rational. So h = g◦f is the function of Example 7.1.8 (except with domain [0, 1] instead
of [0, 2]. We saw in that example that h is not integrable. So we have a compostion of
two integrable functions that is not integrable.

10. Find an example of a function f : [0, 1] → R such that f is not integrable on [0, 1],
but |f | is integrable on [0, 1]. Solution: Let f : [0, 1]→ R be defined by

f(x) =

{
−1 if x is irrational,

1 if x is rational.



By a slight modification of the argument in Example 7.1.7, we see that f is not integrable
on [0, 1]. But |f(x)| = 1 for all x, so |f |, being a constant function, is integrable on [0, 1].

11. Let f be integrable on [a, b] and suppose that m ≤ f(x) ≤M for all x ∈ [a, b]. Show

that m(b− a) ≤
∫ b
a
f ≤M(b− a).

Solution: We’ve seen in class that, under the stated conditions, for any partition P of
[a, b],

m(b− a) ≤ L(f, P ) and U(f, P ) ≤M(b− a).

By definition of U(f) and L(f), we also have, for any partition of [a, b],

L(f, P ) ≤ L(f) and U(f) ≤ U(f, P ).

Moreover, if f is integrable on [a, b], we have

L(f) =

∫ b

a

f = U(f).

Putting all of these inequalities together, we find that

m(b− a) ≤ L(f, P ) ≤ L(f) =

∫ b

a

f = U(f) ≤ U(f, P ) ≤M(b− a),

which gives the desired result.

Section 7.3:

4. Let f be continuous on [a, b]. For each x ∈ [a, b], let F (x) =
∫ b
x
f . Show that F is

differentiable and that F ′(x) = −f(x). Solution: Write
∫ b
a
f =

∫ x
a
f +

∫ b
x
f. Differentiate

both sides. The left hand side is constant with respect to x, so its derivative is zero. The
derivative of

∫ x
a
f with respect to x is f(x), by Theorem 7.3.1. So we get 0 = f(x)+ d

dx

∫ b
x
f ,

or, solving, d
dx

∫ b
x
f = −f(x).

5. Use Theorem 7.3.1 and the previous exercises to find a formula for the derivative of
each function.

(a)
∫ x
0

√
1 + t2 dt. Solution: By Theorem 7.3.1, d

dx

∫ x
0

√
1 + t2 dt =

√
1 + x2.

(b)
∫ x
−x

√
1 + t2 dt. Solution: Write

∫ x
−x

√
1 + t2 dt =

∫ 0

−x

√
1 + t2 dt +

∫ x
0

√
1 + t2 dt.

Using Theorem 7.3.1 combined with Exercise 4 above and Corollary 7.3.3, then, we
find that

d

dx

∫ x

−x

√
1 + t2 dt =

d

dx

∫ 0

−x

√
1 + t2 dt+

d

dx

∫ x

0

√
1 + t2 dt

= −
√

1 + (−x)2 · d
dx

(−x) +
√

1 + x2 =
√

1 + x2 +
√

1 + x2

= 2
√

1 + x2.



(c) F (x) =
∫ sinx

0
cos t2 dt. Solution: By Corollary 7.3.3,

d

dx

∫ sinx

0

cos t2 dt = cos(sin2 x)
d

dx
sinx = cosx cos(sin2 x).

(d)
∫ x3
x2

√
1 + t2 dt. Solution: Similarly to part (b), we have

d

dx

∫ x3

x2

√
1 + t2 dt =

d

dx

∫ 0

x2

√
1 + t2 dt+

d

dx

∫ x2

0

√
1 + t2 dt

= −
√

1 +
(
x2
)2 · d

dx
(x2) +

√
1 +

(
x3
)2 · d

dx
(x3)

= −2x
√

1 + x4 + 3x2
√

1 + x6.

10. Use Theorem 7.3.1 to evaluate limx→0(1/x)
∫ x
0

√
9 + t2 dt. Solution: By Theorem

7.3.1 and by l’Hôpital’s rule,

lim
x→0

(1/x)

∫ x

0

√
9 + t2 dt = lim

x→0

∫ x
0

√
9 + t2 dt

x
= lim

x→0

d
( ∫ x

0

√
9 + t2 dt)/dx

dx/dx

= lim
x→0

√
9

1
= 3.

15. Use Exercise 14 to evaluate
∫ 2

0
3x2
√
x3 + 1 dx. Identify the functions that you have

used and explicitly write down
∫ 2

0
3x2
√
x3 + 1 dx. Solution: Put u = x3 + 1, so that

du = 3x2 dx. Note that, when x = 0, u = 03 + 1 = 1, and when x = 2, u = 23 + 1 = 9. So∫ 2

0

3x2
√
x3 + 1 dx =

∫ 9

1

√
u du =

u3/2

3/2

∣∣∣∣9
1

=
2

3

(
93/2 − 13/2

)
=

2

3

(
27− 1) =

52

3
.

16. Repeat Exercise 15 for
∫ π/2
0

(cosx)(1 + sinx)3 dx. Solution: Put u = 1 + sin x, so
that du = cosx dx. Note that, when x = 0, u = 1 + sin 0 = 1, and when x = π/2,
u = 1 + sin(π/2) = 2. So∫ π/2

0

(cosx)(1 + sin x)3 dx =

∫ 2

1

u3 du =
u4

4

∣∣∣∣2
1

=
1

4

(
24 − 14

)
=

1

4

(
16− 1

)
=

15

4
.


