Assignment:

Section 7.2, pages 290–292: Exercises 1, 7, 10, 11.

Section 7.3, pages 298-300: Exercises 4, 5, 10, 15, 16.

Section 7.2:

1. Mark each statement True or False. Justify each answer.

- (a) If f is monotone on [a, b], then f is integrable on [a, b]. Solution: True. This is Theorem 7.2.1.
- (b) If f is integrable on [a, b], then f is continuous on [a, b]. Solution: False. Consider, for example, the function f of Example 7.2.3. This function is integrable on [0, 1], as shown in that example, but is not continuous on [0, 1], as shown in Example 5.2.9.
- (c) If f and g are integrable on [a,b] then f+g is integrable on [a,b], and $\int_a^b (f+g) = \int_a^b f + \int_a^b g$. Solution: True. This is Theorem 7.2.4(b).
- 7. Let $f:[0,1] \to [0,1]$ be the modified Dirichlet function of Example 7.2.3 and let $h:[0,1] \to [0,1]$ be the function of Example 7.1.8 (with domain restricted to [0,1]). Find an integrable function $g:[0,1] \to [0,1]$ such that $h=g \circ f$, thereby showing that the composition of two integrable functions need not be integrable.

Solution: Let

$$g(x) = \begin{cases} 0 & \text{if } x = 0, \\ 1 & \text{if not.} \end{cases}.$$

Then g is monotone on [0,1], so by Theorem 7.2.1, it's integrable there. But then, if f is the modified Dirichlet function of Example 7.2.3, and $h = g \circ f$, we have

$$h(x) = g(f(x)) = \begin{cases} 0 & \text{if } f(x) = 0, \\ 1 & \text{if not} \end{cases} = \begin{cases} 0 & \text{if } x \text{ is irrational,} \\ 1 & \text{if } x \text{ is rational,} \end{cases}$$

since our function f equals 0 on the irrationals in [0,1] and is not equal to zero if $x \in [0,1]$ is rational. So $h = g \circ f$ is the function of Example 7.1.8 (except with domain [0,1] instead of [0,2]. We saw in that example that h is not integrable. So we have a compostion of two integrable functions that is not integrable.

10. Find an example of a function $f:[0,1]\to\mathbb{R}$ such that f is not integrable on [0,1], but |f| is integrable on [0,1]. Solution: Let $f:[0,1]\to\mathbb{R}$ be defined by

$$f(x) = \begin{cases} -1 & \text{if } x \text{ is irrational,} \\ 1 & \text{if } x \text{ is rational.} \end{cases}$$

By a slight modification of the argument in Example 7.1.7, we see that f is not integrable on [0,1]. But |f(x)| = 1 for all x, so |f|, being a constant function, is integrable on [0,1].

11. Let f be integrable on [a,b] and suppose that $m \leq f(x) \leq M$ for all $x \in [a,b]$. Show that $m(b-a) \leq \int_a^b f \leq M(b-a)$.

Solution: We've seen in class that, under the stated conditions, for any partition P of [a, b],

$$m(b-a) \le L(f,P)$$
 and $U(f,P) \le M(b-a)$.

By definition of U(f) and L(f), we also have, for any partition of [a, b],

$$L(f, P) \le L(f)$$
 and $U(f) \le U(f, P)$.

Moreover, if f is integrable on [a, b], we have

$$L(f) = \int_{a}^{b} f = U(f).$$

Putting all of these inequalities together, we find that

$$m(b-a) \le L(f,P) \le L(f) = \int_a^b f = U(f) \le U(f,P) \le M(b-a),$$

which gives the desired result.

Section 7.3:

- **4.** Let f be continuous on [a, b]. For each $x \in [a, b]$, let $F(x) = \int_x^b f$. Show that F is differentiable and that F'(x) = -f(x). **Solution:** Write $\int_a^b f = \int_a^x f + \int_x^b f$. Differentiate both sides. The left hand side is constant with respect to x, so its derivative is zero. The derivative of $\int_a^x f$ with respect to x is f(x), by Theorem 7.3.1. So we get $0 = f(x) + \frac{d}{dx} \int_x^b f$, or, solving, $\frac{d}{dx} \int_x^b f = -f(x)$.
- **5.** Use Theorem 7.3.1 and the previous exercises to find a formula for the derivative of each function.
- (a) $\int_0^x \sqrt{1+t^2} \, dt$. Solution: By Theorem 7.3.1, $\frac{d}{dx} \int_0^x \sqrt{1+t^2} \, dt = \sqrt{1+x^2}$.
- (b) $\int_{-x}^{x} \sqrt{1+t^2} dt$. Solution: Write $\int_{-x}^{x} \sqrt{1+t^2} dt = \int_{-x}^{0} \sqrt{1+t^2} dt + \int_{0}^{x} \sqrt{1+t^2} dt$. Using Theorem 7.3.1 combined with Exercise 4 above and Corollary 7.3.3, then, we find that

$$\frac{d}{dx} \int_{-x}^{x} \sqrt{1+t^2} \, dt = \frac{d}{dx} \int_{-x}^{0} \sqrt{1+t^2} \, dt + \frac{d}{dx} \int_{0}^{x} \sqrt{1+t^2} \, dt$$

$$= -\sqrt{1+(-x)^2} \cdot \frac{d}{dx} (-x) + \sqrt{1+x^2} = \sqrt{1+x^2} + \sqrt{1+x^2}$$

$$= 2\sqrt{1+x^2}.$$

(c) $F(x) = \int_0^{\sin x} \cos t^2 dt$. Solution: By Corollary 7.3.3,

$$\frac{d}{dx} \int_0^{\sin x} \cos t^2 dt = \cos(\sin^2 x) \frac{d}{dx} \sin x = \cos x \cos(\sin^2 x).$$

(d) $\int_{x^2}^{x^3} \sqrt{1+t^2} dt$. Solution: Similarly to part (b), we have

$$\frac{d}{dx} \int_{x^2}^{x^3} \sqrt{1+t^2} \, dt = \frac{d}{dx} \int_{x^2}^{0} \sqrt{1+t^2} \, dt + \frac{d}{dx} \int_{0}^{x^2} \sqrt{1+t^2} \, dt$$

$$= -\sqrt{1+\left(x^2\right)^2} \cdot \frac{d}{dx} (x^2) + \sqrt{1+\left(x^3\right)^2} \cdot \frac{d}{dx} (x^3)$$

$$= -2x\sqrt{1+x^4} + 3x^2\sqrt{1+x^6}.$$

10. Use Theorem 7.3.1 to evaluate $\lim_{x\to 0} (1/x) \int_0^x \sqrt{9+t^2} dt$. Solution: By Theorem 7.3.1 and by l'Hôpital's rule,

$$\lim_{x \to 0} (1/x) \int_0^x \sqrt{9 + t^2} \, dt = \lim_{x \to 0} \frac{\int_0^x \sqrt{9 + t^2} \, dt}{x} = \lim_{x \to 0} \frac{d(\int_0^x \sqrt{9 + t^2} \, dt)/dx}{dx/dx}$$
$$= \lim_{x \to 0} \frac{\sqrt{9}}{1} = 3.$$

15. Use Exercise 14 to evaluate $\int_0^2 3x^2 \sqrt{x^3 + 1} \, dx$. Identify the functions that you have used and explicitly write down $\int_0^2 3x^2 \sqrt{x^3 + 1} \, dx$. **Solution:** Put $u = x^3 + 1$, so that $du = 3x^2 \, dx$. Note that, when x = 0, $u = 0^3 + 1 = 1$, and when x = 2, $u = 2^3 + 1 = 9$. So

$$\int_0^2 3x^2 \sqrt{x^3 + 1} \, dx = \int_1^9 \sqrt{u} \, du = \frac{u^{3/2}}{3/2} \bigg|_1^9 = \frac{2}{3} \left(9^{3/2} - 1^{3/2} \right) = \frac{2}{3} \left(27 - 1 \right) = \frac{52}{3}.$$

16. Repeat Exercise 15 for $\int_0^{\pi/2} (\cos x) (1 + \sin x)^3 dx$. **Solution:** Put $u = 1 + \sin x$, so that $du = \cos x dx$. Note that, when x = 0, $u = 1 + \sin 0 = 1$, and when $x = \pi/2$, $u = 1 + \sin(\pi/2) = 2$. So

$$\int_0^{\pi/2} (\cos x) (1 + \sin x)^3 dx = \int_1^2 u^3 du = \frac{u^4}{4} \Big|_1^2 = \frac{1}{4} (2^4 - 1^4) = \frac{1}{4} (16 - 1) = \frac{15}{4}.$$