
MATH 3000: Analysis I HW Assignment 6: Solutions to Selected Exercises

Assignment:

Section 6.1, pages 245–248: Exercises 1, 2, 4bd, 6abc, 12.

Section 6.2, pages 255–258: Exercises 1, 3, 5bd, 6, 10.

Section 6.1:

1. Let c be a point in the interval I and suppose f : I → R. Mark each statement as
True or False. Justify each answer.

(a) The derivative of f at c is defined by

f ′(c) = lim
x→c

f(x)− f(c)

x− c

wherever the limit exists. Solution: False. Strictly speaking, it should say “wher-
ever the limit exists and is finite.” As a counterexample, consider f(x) = 3

√
x and

c = 0. We compute that

lim
x→0

f(x)− f(c)

x− c
= lim

x→0

3
√
x− 3

√
0

x− 0
= lim

x→0
x−2/3 = +∞.

So the limit does exist, at least according to the way things are worded in our book.
See, for example, page 175, where it says:

When lim sn = +∞ (or −∞), we shall say that the limit exists....

So, according to Definition 6.1.1, f ′(0) does not exist, in this case.

Remark. This problem amounts to a rather subtle question of language/terminology.
Many would say that, if a limit is infinite, then that limit does not exist. Because
of this, I’ll accept either “true” or “false” for this exercise, though again, strictly
speaking, in our text “the limit exists” does not necessarily mean the same as “the
limit exists and is finite,” so technically the answer here is False.

(b) If f is continuous at c, then f is differentiable at c. Solution: False. E.g. consider
f : R → R defined by f(x) = |x|. Then f is continuous at 0 but not differentiable
there.

(c) If f is differentiable at c, then f is continuous at c. Solution: True. This is Theorem
6.1.6.

2. Let c be a point in the interval I and suppose f : I → R. Mark each statement True
or False. Justify each answer.



(a) If f is differentiable at c, then for any k ∈ R, kf is differentiable at c. Solution:
True. This is Theorem 6.1.7(a).

(b) Suppose g : I → R. If f and g are differentiable at c, then f + g is differentiable at
c. Solution: True. This is Theorem 6.1.7(b).

(c) Suppose g : I → R. If f and g are differentiable at c, then g ◦ f is differentiable
at c. False. We need g to be differentiable at f(c). For example, let I = R, and
let f(x) = x − 2, g(x) = |x|. Then f and g are both differentiable at c = 2, but
g ◦ f(x) = |x− 2| is not.

4. Use Definition 6.1.1 to find the derivative of each function.

(b) f(x) = x3 for x ∈ R. Solution: For c ∈ R, we have

f ′(c) = lim
x→c

f(x)− f(c)

x− c

= lim
x→c

x3 − c3

x− 2
= lim

x→c

(x− c)(x2 + cx+ c2)

x− c
= lim

x→c
(x2 + cx+ c2)

= c2 + c2 + c2 = 3c2.

(d) f(x) =
√
x for x > 0. Solution: For c ∈ (0,∞), we have

f ′(c) = lim
x→c

f(x)− f(c)

x− c

= lim
x→c

√
x−

√
c

x− c
= lim

x→c

√
x−

√
c

x− c
·
√
x+

√
c√

x+
√
c

= lim
x→c

x− c

(x− c)(
√
x+

√
c)

= lim
x→c

1√
x+

√
c

=
1√

c+
√
c
=

1

2
√
c
.

6. Let f(x) = x2 sin(1/x) for x ∕= 0 and f(0) = 0.

(a) Use the chain rule and the product rule to show that f is differentiable at each c ∕= 0
and find f ′(c). (You may assume that the derivative of sin x is cos x for all x ∈ R.)
Solution: For x ∕= 0,

f ′(x) = x2 d

dx
sin

󰀕
1

x

󰀖
+ sin

󰀕
1

x

󰀖
d

dx
x2

= x2 cos

󰀕
1

x

󰀖
· d

dx

󰀕
1

x

󰀖
+ 2x sin

󰀕
1

x

󰀖

= x2 cos

󰀕
1

x

󰀖
·
󰀕
−1

x2

󰀖
+ 2x sin

󰀕
1

x

󰀖
= − cos

󰀕
1

x

󰀖
+ 2x sin

󰀕
1

x

󰀖
.

So of course f ′(c) = − cos(1/c) + 2c sin(1/c) for c ∕= 0.



(b) Use Definition 6.1.1 to show that f is differentiable at c = 0 and find f ′(0). Solution:
We have

f ′(c) = lim
x→c

f(x)− f(c)

x− c

= lim
x→c

x2 sin(1/x)− 0

x− 0
= lim

x→c
x sin

󰀕
1

x

󰀖
= 0,

by the squeeze law.

(c) Show that f ′ is not continuous at x = 0. Solution: If f ′ were continuous at x = 0,
we would have limx→0 f

′(x) = f ′(0), by Theorem 5.2.2(a⇒d). But f ′(0) = 0 by
part (b) above, while limx→0 f

′(x) does not exist, by part (a) above. (Although
limx→0 2x sin(1/x) does exist, and equals zero by the squeeze law, limx→0 cos(1/x)
does not exist, by the same reasoning as we used for Example 5.1.11.) So f ′ is not
continuous at x = 0.

12. Prove: if a polynomial p(x) is divisible by (x− a)2, then p′(x) is divisible by (x− a).
Solution: First of all, it follows from Example 6.1.8 that all polynomials are differentiable
at all points in R.

Suppose p(x) is a polynomial divisible by (x − a)2. This means p(x) = (x − a)2q(x)
for some polynomial q(x). Applying the product rule, together with the chain rule (to
differentiate (x− a)2), then gives

p′(x) = (x− a)2q′(x) + q(x)
d

dx
(x− a)2

= (x− a)2q′(x) + 2(x− a)q(x) = (x− a)
󰀃
(x− a)q′(x) + 2q(x)

󰀄
.

Since q(x) is a polynomial, so is (x− a)q′(x) + 2q(x). So p′(x) is divisible by (x− a).

Section 6.2:

1. Mark each statement as True or False. Justify each answer.

(a) A continuous function defined on a bounded interval assumes maximum and mini-
mum values. Solution: False. This need not be true if the interval is not compact.
For example, f(x) = x on (0, 1) does not attain a maximum or a minimum there.

(b) If f is continuous on [a, b], then there exists a point c ∈ (a, b) such that f ′(c) =
[f(b)−f(a)]/(b−a). Solution: False. This need not be true if f is not differentiable
on (a, b). For example, f(x) = |x| is continuous on [−1, 1], but there is no point c in
(−1, 1) where f ′(c) = [f(1)− f(−1)]/(1− (−1)) = 0.

(c) Suppose f is differentiable on (a, b). If c ∈ (a, b) and f ′(c) = 0, then f(c) is either
the maximum or the minimum of f on (a, b). Solution: False. Consider f(x) = x3

on (−1, 1). Certainly f is differentiable on this interval. We have f ′(0) = 0, but
f(0) = 0 is neither the maximum nor the minimum value of f on this interval.



3. Let f(x) = x2 − 4x+ 5 for x ∈ [0, 3].

(a) Find where f is strictly increasing and where it is strictly decreasing. Solution:
We have f ′(x) = 2x − 4. By Theorem 6.2.8, f is strictly increasing if 2x − 4 > 0,
meaning x > 2, meaning x ∈ (2, 3], since our domain is [0, 3]. Similarly, f is strictly
decreasing if 2x− 4 < 0, meaning x < 2, meaning x ∈ [0, 2).

(b) Find the maximum and minimum of f on [0, 3]. Solution: Since f is decreasing
on [0, 2) and increasing on (2, 3], its minimum value, on [0, 3], must occur at x = 2.
This minimum value is f(2) = 1. Its maximum value must then be at one of the
endpoints. We have f(0) = 5 and f(3) = 2. Since 5 is the larger of these numbers,
we find that the maximum value of f , on [0, 3], is f(0) = 5.

5. Use the mean value theorem to establish the following inequalities. (You may assume
any relevant derivative formulas from calculus.)

(b)
x− 1

x
< ln x < x − 1 for x > 1. Solution: Let f(t) = ln t, on the interval [1, x].

Since f is continuous on this interval and differentiable on (1, x), the mean value
theorem tells us that, for some number c ∈ (1, x),

f(x)− f(1)

x− 1
= f ′(c) =

1

c
.

That is,
ln x

x− 1
=

1

c
. (∗)

But since c ∈ (1, x), we have c < x, so 1/c > 1/x, so (∗) gives

ln x

x− 1
>

1

x
,

or ln x >
x− 1

x
, as claimed. Moreover, since c ∈ (1, x), we have c > 1, so 1/c < 1,

so (∗) gives
ln x

x− 1
< 1,

or ln x < x− 1, also as claimed.

(d)
√
1 + x < 5 +

x− 24

10
for x > 24. Solution: Let f(t) =

√
1 + t, on the interval

[24, x]. Since f is continuous on this interval and differentiable on (24, x), the mean
value theorem tells us that, for some number c ∈ (24, x),

f(x)− f(24)

x− 24
= f ′(c) =

1

2
√
1 + c

.



That is, √
1 + x−

√
25

x− 24
=

1

2
√
1 + c

. (∗∗)

But since c ∈ (24, x), we have c > 24, so (∗∗) gives
√
1 + x−

√
25

x− 24
<

1

2
√
1 + 24

,

or √
1 + x− 5

x− 24
<

1

10
,

or
√
1 + x < 5 +

x− 24

10
, as claimed.

6. Rolle’s theorem requires three conditions be satisfied:

(i) f is continuous on [a, b],

(ii) f is differentiable on [a, b], and

(iii) f(a) = f(b).

Find three functions that satisfy two of these conditions, but for which the conclusion of
Rolle’s theorem does not follow. That is, there is no point c ∈ (a, b) such that f ′(c) = 0.

Solution: The function f(x) = x satisfies the first two conditions on [1, 5], but not the
third. Note that there is no c ∈ (1, 5) with f ′(c) = 0. Next: the function f(x) = |x|
satisfies the first and third conditions on [−1, 1], but not the second. Note that there is
no c ∈ (−1, 1) with f ′(c) = 0. Finally: if f(−1) = 3 and f(x) = x on (−1, 3], then f
satisfies the second and third conditions on [−1, 3], but not the first. Note that there is
no point c ∈ (−1, 3) with f ′(c) = 0.

10. Let f be differentiable on (0, 1) and continuous on [0, 1]. Suppose that f(0) = 0 and
that f ′ is increasing on (0, 1). (See Exercise 8.) Let g(x) = f(x)/x for x ∈ (0, 1). Prove
that g is increasing on (0, 1).

Solution: It suffices to show that g′ > 0 on (0, 1). To do so, we use the quotient rule to
show that, on (0, 1),

g′(x) =
d

dx

󰀕
f(x)

x

󰀖
=

xf ′(x)− f(x)

x2
.

Note that the denominator is always positive on (0, 1), so to show that g′(x) is always
positive on (0, 1), it suffices to show that the numerator xf ′(x)− f(x) is always positive
on (0, 1). That is, we need only show that, for x ∈ (0, 1), we have xf ′(x)− f(x) > 0, or

f ′(x) >
f(x)

x
. (∗′)



(We have divided through by x. This doesn’t change the direction of the inequality,
because we’re assuming x > 0.)

To show (∗′), for x ∈ (0, 1), we apply the mean value theorem to the function f on the
interval (0, x). That theorem tells us that there is a number c in this interval with

f ′(c) =
f(x)− f(0)

x− 0
=

f(x)

x
. (†)

Now since c ∈ (0, x), we have x > c. But we’re assuming that f ′ is increasing on (0, 1),
so f ′(x) > f ′(c). So by (†),

f ′(x) >
f(x)

x
,

which is what we wanted to show, and we’re done.


