MATH 3000: Analysis I HW Assignment 5: Solutions to Selected Exercises

Assignment:

Section 5.1, pages 203—205: Exercises 1, 5, 6c¢.

Section 5.2, pages 212—-214: Exercises 1, 2, 6, 13.

Section 5.3, pages 220—221: Exercises 1, 3abdef (hint: they’re all false!), 11.

Section 5.1:

1. Let f: D: R and let ¢ be an accumulation point of D. Mark each statement as True
or False. Justify each answer.

(a) lim,. f(x) = L iff for every ¢ > 0 there exists a § > 0 such that |f(z) — L| < ¢
whenever z € D and |x — ¢| < . Solution: False. Instead of “|x —¢| < §,” it
should say “0 < |z —¢| < §.” For example, let f : R — R be defined by f(z) =z
if © # 1, but f(1) = 2. Let ¢ =1 and L = 1. It’s true that lim,_. f(z) = L,
but it’s not true that, for every £ > 0, there exists a 0 > 0 such that x € R and
v —c| < = |f(x) — L| < e. For example, let ¢ = 1/2. Then, given any 6 > 0, let
x = 1. Then certainly |z —c¢| = |1 — 1] =0 < 9, but

F@) L =1f 1) -1 =2~ 1| =1> =<

(b) lim,_. f(x) = L iff for every deleted neighborhood U of ¢ there exists a neighborhood
V of L such that f(U N D) C V. Solution: False. This is not what Theorem 5.1.2
says. In that Theorem, instead of “for every deleted neighborhood U of ¢ there
exists a neighborhood V' of L...,” it says “for every neighborhood V" of L there exists
a deleted neighborhood U of c....”

Of course, the fact that Theorem 5.1.2 doesn’t say something does not mean that
something is false. (For example, Theorem 5.1.2 does not say “All squares have four
sides,” yet all squares do have four sides.) To prove that the statement is false, we
need a counterexample. Here’s one: Let f : R — R be given by f(z) = tan(z).
Let ¢ = 0 and L = 0. Then certainly lim, . f(z) = L. But now take the deleted
neighborhood U = N*(0, 7) of c. Then

rwnp) = £(8(0.3)) = (-0.00) =

(the image of the interval (—7, %) under the tangent function is the entire real line).

So f(U N D) is not contained in any neighborhood V' of L, since a neighborhood is
of the form N(z,e) for some finite number €, so neighborhoods are bounded, but

f(UND) =R is not.



(¢) lim,,. f(x) = L iff for every sequence (s,) in D that converges to ¢ with s, # ¢
for all n, the sequence (f(s,)) converges to L. Solution: True. This is exactly the
statement of Theorem 5.1.8.

(d) If f does not have a limit at ¢, then there exists a sequence (s,) in D with each
sp # ¢ such that (s,) converges to ¢, but (f(s,)) is divergent. Solution: True. This
is exactly the statement of Theorem 5.1.10.

5. Find a § > 0 so that |z + 2| < ¢ implies that |#? — 3z — 10| < 1/3. Solution: Let
e = 1/3. [Scratchwork: we want to express |22 — 3z — 10| in terms of |z + 2|. We have

|2*—32—10| = |(z+2)(z—5)| = [(z+2)(z+2-7)| = [z+2] [2+2-7] < |z+2| (|z+2]+7).

We want this to be < 1/3. Let’s first require that |z + 2| < 1. Then we have |z + 2| (|z +
2| +7) <|z+2|(1+7) =8|z +2|. If we now also require that |z + 2| < (1/3)/8 = 1/24,
then we get 8|z 4+ 2| < 8- (1/24) = 1/3, which is what we want. Of course 1/24 is less
than 1, so |x + 2| < 1/24 will work. So this is what we write.] Let 6 = 1/24. Then

lz+2] < 6= |22 =32 — 10| = |(z + 2)(z — 5)|
=|(z+2)(z+2-T7)=lz+2lz+2-7<|z+2|(Jz+2[+7)

1
—.(1 =1/3.
<24(+7) /3

6¢. Use Definition 5.1.1 to prove that

lim 22 = 8.
r—2

Solution: Let € > 0. [Scratchwork: using long division of polynomials, you can show
that 23 — 8 = (z — 2)(2? + 22 + 4). But then, again using long division of polynomials,
you can show that z? + 2x + 4 = (z — 2)(z + 4) + 12. Note that z +4 =2 —2+6. So

2% =8| = |(z — 2)||2* + 2z + 4| = |(z — 2)| |(z — 2)(x — 2+ 6) + 12|
<z —2| (Jz — 2| (Jlz — 2| + 6) + 12).
If we first assume that |z — 2| < 1, then the right-hand side of the above is < |z — 2| -

(1-(146)+12) = 19|z — 2|. So if we also assume that |z — 2| < /19, we have what we
want. So this is what we write.] Let 6 = min{1,e/19}. Then

lz—2| <d=|2° =8| =|(z —2)||2° + 2z + 4] = |(x — 2)| |(z — 2)(z — 2+ 6) + 12|
<lz—2|(Jz —2|(Jz — 2|+ 6) + 12) < |z — 2|(1 - (1 + 6) + 12)

£
9z —2| < 19 g=°¢

So lim,_,» 22 = 8.



Section 5.2:

1. Let f: D — R and let ¢ € D. Mark each statement as True or False. Justify each
answer.

(a)

(b)

f is continuous at c iff for every e > 0 there exists a § > 0 such that | f(z) — f(¢)| < e
whenever |x — ¢| < § and x € D. Solution: True. This is Definition 5.2.1.

If f(D) is a bounded set, then f is continuous on D. Solution: False. Let f: R — R
be defined by f(x) = —1if < 0 and f(z) = 1 if z > 0. Then f(D) is bounded
(f(D) = f(R) ={-1,1}), but f is not continuous at ¢ = 0.

If ¢ is an isolated point of D, then f is continuous at c. Solution: True. We stated
this in class, and gave the example of f: N — R given by f(n) = n?. We showed
that f is continuous at ¢ = 3. As we noted, that example can be generalized to show
that any function is continuous at any isolated point in its domain. See also p. 206

of the text.

If f is continuous at ¢ and (x,,) is a sequence in D, then z,, — ¢ whenever f(z,) —
f(c). Solution: False. For example, consider f: R — R defined by f(z) = sinz.
Certainly f is continuous on R. Let 2, = 7 + L and let ¢ = 0. Then (f(z,)) =
(sin(m + +)) converges to f(c) = f(0) = 0, even though z, — 7 # 0.

If f is continuous at ¢, then for every neighborhood V' of f(c¢) there exists a neighbor-
hood U of ¢ such that f(UN D)= V. Solution: False. The conclusion of Theorem
5.2.2(a=c) says “f(UND) CV,” not “f(UN D) =V.” Here’s a counterexample:
let f(z) = 2%, with domain R. This function is continuous at ¢ = 0, and f(0) = 0.
Now take any neighborhood N(0,¢) = (—¢,¢) of f(0). No neighborhood U of 0 can
satisfy f(UND) =V, because if U is a neighborhood of 0, then U = N(0, ¢) for some
real number §, so f(UN D) = f(U) = f((—6,d)) = [0,6?), which cannot equal V,
because V' contains negative numbers.

2. Let f: D — R and let ¢ € D. Mark each statement as True or False. Justify each
answer.

(a)

(b)

(c)

If f is continuous at ¢ and ¢ is an accumulation point of D, then lim, . f(z) = f(c).
Solution: True. This is Theorem 5.2.2(a=d).

Every polynomial is continuous at each point in R. Solution: True. This is Example
5.2.3.

If z, is a Cauchy sequence in D, then (f(x,)) is convergent. Solution: False.
For example, if x, = 1/n, then (z,) is convergent and therefore Cauchy. But if
f(z) =1/z, then f(z,) =1/(1/n) = n does not define a convergent sequence.

If f: R — R is continuous at each irrational number, then f is continuous on R.
Solution: False. See Example 5.2.9.



(e)

If f: R — R and g: R — R are both continuous (on R), then f og and go f are
both continuous on R. Solution: True. This follows from Theorem 5.2.12. We do
have to check that f(R) is contained in the domain of g and that g(R) is contained
in the domain of f, but this is clear, since both domains equal R.

6. Prove or give a counterexample for each statement.

(a)

If f is continuous on D and k € R, then kf is continuous on D. Solution: This is
true. Proof: this is automatic at any isolated point of D, because all functions are
continuous at such a point. So suppose c is an accumulation point of D. By Theorem
5.2.2(a=d), lim, . f(z) = f(¢). Then by Theorem 5.1.13, lim, ,.kf(z) = kf(c).
Then by Theorem 5.2.2(d=-a), kf is continuous at c.

If f and f 4 g are continuous on D, then ¢ is continuous on D. Solution: This is
true, by Theorem 5.2.10 and the fact that g = (f + g) + (—f). (Strictly speaking,
we need to show that f is continuous whenever f is, but this follows from part (a)
of this exercise with k = —1.)

If f and fg are continuous on D, then g is continuous on D. Solution: This is false.
E.g. define functions f and g on R by f(z) = 22, and g(z) = 1/z for = # 0, but
g(0) = 1. Note that fg(x) = x for z # 0, and fg(0) =0-1=0. So fg(x) = x for all

x, so fg is continuous on R. So is f, but g is not.

If £2is continuous on D, then f is continuous on D. Solution: This is false. Let f be
as in Exercise 1(b), Section 5.2 (see above). Then f? is continuous on R (f?(z) = 1
for all x € R), but f is not.

If fis continuous on D and D is bounded, then f(D) is bounded. Solution: This
is false. E.g. let D = (0,1) and f(z) =1/x.

If f and g are not continuous on D, then f 4 g is not continuous on D. Solution:
This is false. E.g. let f be the function of Exercise 1(b), Section 5.2 (see above), and
let g = —f. Then neither f nor g is continuous on R, but f+g¢ is, since (f+g)(x) =0
for all x.

If f and g are not continuous on D, then fg is not continuous on D. Solution:
This is false. E.g. let f and ¢ both be the function of Exercise 1(b), Section 5.2 (see
above). Then neither f nor g is continuous on R, but fg is, since (fg)(x) = 1 for all
x.

If f: D - FE and g : E — F are not continuous on D and E respectively, then
go f: D — Fis not continuous on D. Solution: This is false. For example, Let

12 i #0,
f(x)_{o it 2 =0,



and let

G i

Clearly, both functions are discontinuous at z = 0. but continuous elsewhere. But
note that
g(1/2?) = 2? if x # 0,

g(f(0)) =g(0) =0 ifz=0.

So g o f is continuous at x = 0 (and, clearly, everywhere else).

9(f(z)) = {

13. Let f: D — R be continuous at ¢ € D and suppose that f(c) > 0. Prove that there
exists an a > 0 and a neighorhood U of ¢ such that f(z) > « for all x € U N D.

Solution: Let € = f(c)/2. We're assuming f(c) > 0, so € > 0. By definition of continuity,
there is a § > 0 such that € D and |z — ¢| < ¢ implies |f(z) — f(c)| < € = f(c)/2.
But note that f(c) — f(z) < |f(z) — f(c)| always. So x € D and |z — ¢| < ¢ implies
f(e)— f(z) < f(c)/2 or, solving for f(z), f(x) > f(c)/2. But note that saying = € D and
|z — ¢| < 6 is the same as saying that x is in U N D, where U is the neighborhood N(c, d)
of ¢. So we’ve found a neighborhood U of ¢ such that x €e UN D = f(z) > a = f(c)/2.

Section 5.3:

1. Mark each statement as true or false. Justify each answer.

(a) Let D be a compact subset of R and suppose that f: D — R is continuous. Then
f(D) is compact. Solution: True. This is exactly Theorem 5.3.2.

(b) Suppose that f: D — R is continuous. Then there exists a point x; € D such that
f(z1) > f(z) for all x € D. Solution: False. The function f(z) = z is continuous
on D =R, but there is no real number z; such that f(z;) > f(x) for all x € R.

(c) Let D be a bounded subset of R and suppose that f: D — R is continuous. Then
f(D) is bounded. Solution: False. For example, f(z) = 1/x is continuous on (0, 1),
and (0, 1) is bounded, but f((0,1)) = (1, 00) is not.

3. Let f: D — R be continuous. For each of the following, prove or give a counterexample.

(a) If D is open, then f(D) is open. Solution: This is false. For example, Let f(z) =
sinz and D = (—10,10) (or D = R). Then D is open, but f(D) = [—1, 1] is not.

(b) If D is closed, then f(D) is closed. Solution: This is false. For example, Let
f(z) = arctan(z) and D = R. Then D is closed, but f(D) = (—7%, 5) is not.

(d) If D is not closed, then f(D) is not closed. Solution: This is false: see part (a) of
this exercise, above.



(e) If D is not compact, then f(D) is not compact. Solution: This is false: see part (a)
of this exercise, above.

(f) If D is unbounded, then f(D) is unbounded. Solution: This is false. For example,
Let f(x) =sinxz and D = R. Then D is unbounded, but f(D) = [—1, 1] is not.

11. (a) Let p € R and define f: R — R by f(z) = |« — p|. Prove that f is continuous.

Solution: Let ¢ € R and let € > 0. Let § = . Then, since Hx| — |y|| < |z — y| always
(see Exercise 6a, Section 3.2), we have

2=l <6 = |f(x) = fO = |le = pl — o =

<|@=p) - (c=pl|=lz—c <i=¢

So f is continuous at c. O

(b) Let S be a compact subset of R and let p € R. Prove that S has a “closest point” to
p. That is, prove that there exists a point ¢ € S such that |¢ — p| = inf{|z — p| : z € S}.

Solution: Let S and p be as stated; let f be as in part (a) of this exercise. Since f is
continuous on .S and S is, by assumption, compact, we know by corollary 5.3.3 that there
is a point ¢ € S with f(q) < f(x) for all z € S. That is, by definition of f, [¢—p| < |z —p|
for all z € S.



