Assignment:

Section 3.4, pages 140-143: Exercises 1acdgi, 2abefh, 7adeg, 9a, 10, 14.

Section 3.5, pages 148-151: 1, 2, 3c, 4, 8b.

Section 4.1, pages 169-170: 1, 2, 3bc, 6cd, 13 (HINT for #13: see S-POP p. 15, Proposition B(iv)- 1_{EEEEE} .)

Section 3.4:

- 1. Let $S \subset \mathbb{R}$. Mark each statement as True or False. Justify each answer.
- (a) int $S \cap \text{bd } S = \emptyset$. Solution: True. If $x \in \text{int } S$, then some neighborhood $N(x, \varepsilon)$ of x is contained completely in S. But then x can't be in bd S, because every neighborhood of a boundary point of S intersects $\mathbb{R} \setminus S$.
- (c) $\operatorname{bd} S \subseteq S$. Solution: False. For example, if S = (0, 1), then $0 \in \operatorname{bd} S$ but $0 \notin S$.
- (d) S is open iff S = int S. Solution: True. This is Theorem 3.4.7(a).
- (g) Every neighborhood is an open set. **Solution: True.** By Definition 3.4.1, a neighborhood of x is a set of the form $(x \varepsilon, x + \varepsilon)$, which is an open interval, and thus an open set.
- (i) The union of any collection of closed sets is closed. **Solution: False.** For example, the union of the collection $\{[\frac{1}{n}, 1 \frac{1}{n}] : n \in \mathbb{N}\}$ of closed intervals equals (0, 1), which is not closed.
- 7. Let S and T be subsets of \mathbb{R} . Find a counterexample for each of the following.
- (a) If P is the set of all isolated points of S, then P is a closed set. **Solution:** A counterexample is the set $S = \{1 + \frac{1}{n} : n \in \mathbb{N}\}$. Note that every point in S is an isolated point of S, so the set of isolated points of S is S. But S is not closed, because it does not contain the point 1, which is a boundary point of S.
- (d) If S is open, then $\operatorname{int}(\operatorname{cl} S) = S$. Solution: A counterexample is the set $S = (0,1) \cup (1,2)$. We have $\operatorname{cl} S = [0,2]$, so $\operatorname{int}(\operatorname{cl} S) = \operatorname{int}[0,2] = (0,2) \neq S$.
- (e) $\operatorname{bd}(\operatorname{cl} S) = \operatorname{bd} S$. **Solution:** A counterexample is the set $S = [0, 1) \cup (1, 2]$. We have $\operatorname{cl} S = [0, 2]$, so $\operatorname{bd}(\operatorname{cl} S) = \{0, 2\}$, while $\operatorname{bd} S = \{0, 1, 2\}$.
- (g) $\operatorname{bd}(S \cup T) = (\operatorname{bd} S) \cup (\operatorname{bd} T)$. **Solution:** A counterexample is given by the sets S = [0,1] and T = [1,2]. We have $\operatorname{bd}(S \cup T) = \operatorname{bd}[0,2] = \{0,2\}$, while $(\operatorname{bd} S) \cup (\operatorname{bd} T) = \{0,1\} \cup \{1,2\} = \{0,1,2\}$.

9. Prove the following. (a) An accumulation point of a set S is either an interior point of S or a boundary point of S.

Solution: Let x be an accumulation point of a set S. If $x \in \text{int } S$, then we're done. If not, then we must show that $x \in \text{bd } S$. By definition of boundary point, this means: we must show that any neighborhood $N(x, \varepsilon)$ of x intersects both S and $\mathbb{R} \setminus S$.

So let $N(x,\varepsilon)$ be such a neighborhood. Since x is an accumulation point of S we know, by definition of accumulation point, that $N^*(x,\varepsilon)$ intersects S; since $N^*(x,\varepsilon) \subseteq N(x,\varepsilon)$, we conclude that $N(x,\varepsilon)$ intersects S as well. So we need only show that $N(x,\varepsilon)$ intersects $\mathbb{R}\backslash S$.

But we're assuming that $x \notin \text{int } S$, so no neighborhood $N(x, \varepsilon)$ of S can lie completely inside S, so $N(x, \varepsilon)$ must intersect $\mathbb{R} \setminus S$, and we're done.

Section 3.5:

- 2. Mark each statement as True or False. Justify each answer.
- (a) Some unbounded sets are compact. **Solution: False.** By the Heine-Borel Theorem, compact \Rightarrow bounded, so by the contrapositive, not bounded \Rightarrow not compact.
- (b) If S is a compact subset of \mathbb{R} , then there is at least one point in \mathbb{R} that is an accumulation point of S. Solution: False. The set $S = \{3\}$ is compact, but has no accumulation points in \mathbb{R} .
- (c) If S compact and x is an accumulation point of S, then $x \in S$. Solution: True. If S is compact, then it's closed, by the Heine-Borel Theorem. But a closed set contains all of its accumulation points, by Theorem 3.4.17(a).
- (d) If S is unbounded, then S has at least one accumulation point. Solution: False. The set \mathbb{N} is unbounded, but has no accumulation points.
- (e) Let $\mathcal{F} = \{A_i : i \in \mathbb{N}\}$ and suppose that the intersection of any finite subfamily of \mathcal{F} is nonempty. If $\cap \mathcal{F} = \emptyset$, then for some $k \in \mathbb{N}$, A_k is not compact. **Solution: True.** Theorem 3.5.7 tells us the following: Let $\mathcal{F} = \{A_i : i \in \mathbb{N}\}$ and suppose that the intersection of any finite subfamily of \mathcal{F} is nonempty. If each A_i is compact, then the intersection of the A_i 's is nonempty. The contrapositive of this last statement is: If $\cap \mathcal{F} = \emptyset$, then for some $k \in \mathbb{N}$, A_k is not compact. s
- **3.** Show that each subset of \mathbb{R} is not compact by describing an open cover for it that has no finite subcover. (c) \mathbb{N} **Solution:** An open cover of \mathbb{N} is $\mathcal{C} = \{(n \frac{1}{4}, n + \frac{1}{4}) : n \in \mathbb{N}\}$ (clearly \mathbb{N} is contained in the union of these sets, and clearly each of the intervals in the collection is open). To prove that this open cover has no finite subcover, let \mathcal{B} be a finite collection of the intervals $(n \frac{1}{4}, n + \frac{1}{4})$. Let n_0 be the largest of the integers n appearing; that is, $n_0 = \max\{n : (n \frac{1}{4}, n + \frac{1}{4}) \in \mathcal{B}\}$. Note that $n_0 + 1$ is not in any of the intervals

making up \mathcal{B} , since clearly, an upper bound for the union of the intervals in \mathcal{B} is $n_0 + \frac{1}{4}$. So \mathbb{N} is not contained in \mathcal{B} , so we have found an open cover \mathcal{C} of \mathbb{N} that has no finite subcover.

4. Prove that the intersection of any collection of compact sets is compact. **Solution:** Let \mathcal{C} be a collection of compact sets. By definition of intersection,

$$\cap_{C \in \mathcal{C}} C \subseteq B$$
,

where B is any one of the sets in C. By assumption, B is bounded, and clearly any subset of a bounded set is bounded. (This follows, for example, from Exercise 8, Section 3.3.) So $\cap_{C \in C} C$ is bounded.

Moreover, each element of \mathcal{C} is closed, and therefore so is $\cap_{C \in \mathcal{C}} C$, by Corollary 3.4.11(a). So $\cap_{C \in \mathcal{C}} C$ is closed and bounded, and is therefore compact, by the Heine-Borel Theorem.

Section 4.1:

- 2. Mark each statement as true or false. Justify each answer.
- (a) If $s_n \to 0$, then for every $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that $n \ge N$ implies $s_n < \varepsilon$. **Solution: True.** The definition of limit tells us that, if $s_n \to 0$, then for every $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that $n \ge N$ implies $|s_n| < \varepsilon$. But $|s_n| < \varepsilon \Rightarrow -\varepsilon < s_n < \varepsilon$, which certainly implies $s_n < \varepsilon$.
- (b) If for every $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that $n \geq N$ implies $s_n < \varepsilon$, then $s_n \to 0$. **Solution: False.** Consider $s_n = -3$. Since -3 < 0, it's certainly true that, if $\varepsilon > 0$, then for all $n \geq 1$, $s_n < \varepsilon$. But $s_n \not\to 0$.
- (c) Given sequences (s_n) and (a_n) , if, for some $s \in \mathbb{R}$, k > 0 and $m \in \mathbb{N}$ we have $|s_n s| \le k|a_n|$ for all n > m, then $\lim s_n = s$. **Solution: False.** For this to be true, we would need the extra condition $a_n \to 0$. For example, let $s_n = 5 + \frac{1}{n}$, s = 2, k = 3, and $a_n = 2n$. For all integers $n \ge 1$, we have $|s_n s| = |5 + \frac{1}{n} 2| = 3 + \frac{1}{n} < k|a_n| = 6n$, But $s_n \nrightarrow 0$.
- (d) If $s_n \to s$ and $s_n \to t$, then s = t. Solution: True. This is Theorem 4.1.14.
- **6.** Using only Definition 4.1.2, prove the following.
- (c) $\lim \frac{4n+1}{n+3} = 4$. **Solution:** Let $\varepsilon > 0$. [We want $|\frac{4n+1}{n+3} 4| = \frac{11}{n+3}$ to be $< \varepsilon$ for n large enough. Solving $11/(n+3) < \varepsilon$ gives $n > (11-3\varepsilon)/\varepsilon$. So here's what we write.] Let $N \in \mathbb{N}$ be any integer larger than $11/\varepsilon 3$. Then

$$n \ge N \Rightarrow \left| \frac{4n+1}{n+3} - 4 \right| = \frac{11}{n+3} < \frac{11}{(11/\varepsilon - 3) + 3} = \varepsilon.$$

So

$$\lim \frac{4n+1}{n+3} = 4.$$

(d) $\lim \frac{\sin n}{n} = 0$. **Solution:** Let $\varepsilon > 0$. [We want $|(\sin n)/n - 0| = |\sin n|/n < \varepsilon$. But $|\sin n| \le 1$ for all n, so it will be enough to have $1/n < \varepsilon$, or $n > 1/\varepsilon$.] Let N be any integer larger than $1/\varepsilon$. Then

$$\left| \frac{\sin n}{n} - 0 \right| = \frac{|\sin n|}{n} \le \frac{1}{n} < \frac{1}{1/\varepsilon} = \varepsilon.$$

So

$$\lim \frac{\sin n}{n} = 0.$$

13. Suppose that $(a_n), (b_n)$, and (c_n) are sequences such that $a_n \leq b_n \leq c_n$ for all $n \in \mathbb{N}$ and such that $\lim a_n = \lim c_n = b$. Prove than $\lim b_n = b$. (Note: this result is sometimes called the **squeeze law.**)

Solution: Let $\varepsilon > 0$. [We want to show that $|b_n - b| < \varepsilon$ for n large enough. The idea is that both a_n and c_n will be close to b for n large enough, and since b_n is in between a_n and c_n , b has nowhere to go other than b. Here's how we make this formal.]

Since $a_n \leq b_n \leq c_n$, we have

$$a_n - b \le b_n - b \le c_n - b. \tag{SQ1}$$

(I've called this equation (SQ1) to remind us of the squeeze law.)

Let $N_1 \in \mathbb{N}$ be such that $n \geq N_1 \Rightarrow |a_n - b| < \varepsilon$. Note that, since $x \leq |x|$ always, we find that, for such n, we have $a_n - b < \varepsilon$, or, multiplying by -1,

$$-\varepsilon < a_n - b. \tag{SQ2}$$

Now let $N_2 \in \mathbb{N}$ be such that $n \geq N_2 \Rightarrow |c_n - b| < \varepsilon$. Note that, since $c_n - b \leq |c_n - b|$ always, we find that, for such n, we have

$$c_n - b < \varepsilon.$$
 (SQ3)

So suppose $N = \max\{N_1, N_2\}$. Then for $n \geq N$, both (SQ2) and (SQ3) are true. Putting this together with (SQ1) tells us that, for $n \geq N$,

$$-\varepsilon < a_n - b \le b_n - b \le c_n - b < \varepsilon,$$

which certainly implies $-\varepsilon < b_n - b < \varepsilon$, which is the same as saying $|b_n - b| < \varepsilon$. So $b_n \to b$.