MATH 3000: Analysis I HW Assignment 4: Solutions to Selected Exercises

Assignment:
Section 3.4, pages 140-143: Exercises lacdgi, 2abefh, 7adeg, 9a, 10, 14.
Section 3.5, pages 148-151: 1, 2, 3c, 4, 8b.

Section 4.1, pages 169-170: 1, 2, 3bc, 6ed, 13 (HINT for #13: see S-POP p. 15,
PI'OpOSitiOIl B(IV)'lEEEEE)

Section 3.4:

1. Let S C R. Mark each statement as True or False. Justify each answer.

(a) intSNbdS = 0. Solution: True. If z € int S, then some neighborhood N(z,¢)
of x is contained completely in S. But then x can’t be in bd .S, because every
neighborhood of a boundary point of S intersects R\S.

(¢) bdS C S. Solution: False. For example, if S = (0,1), then 0 € bd .S but 0 & S.
(d) S isopen iff S =intS. Solution: True. This is Theorem 3.4.7(a).

(g) Every neighborhood is an open set. Solution: True. By Definition 3.4.1, a neigh-
borhood of x is a set of the form (z — e,z + €), which is an open interval, and thus
an open set.

(i) The union of any collection of closed sets is closed. Solution: False. For example,
the union of the collection {[+,1— 1]: n € N} of closed intervals equals (0, 1), which
is not closed.

7. Let S and T be subsets of R. Find a counterexample for each of the following.

(a) If P is the set of all isolated points of S, then P is a closed set. Solution: A
counterexample is the set S = {1 + %: n € N}. Note that every point in S is an
isolated point of S, so the set of isolated points of S is S. But S is not closed,
because it does not contain the point 1, which is a boundary point of S.

(d) If S is open, then int(clS)) = S. Solution: A counterexample is the set S =
(0,1) U (1,2). We have cl.S = [0, 2], so int(cl S)) = int[0,2] = (0,2) # S.

(e) bd(clS)=bdS. Solution: A counterexample is the set S = [0,1) U (1,2]. We have
clS =10,2], so bd(cl S) = {0,2}, while bd S = {0, 1, 2}.

(g) bd(SUT) = (bdS) U (bdT). Solution: A counterexample is given by the sets
S =[0,1] and T = [1,2]. We have bd(S UT) = bd|0,2] = {0,2}, while (bd S) U
(bdT) = 0,1} U{1,2} = {0,1,2}.



9. Prove the following. (a) An accumulation point of a set S is either an interior point
of S or a boundary point of S.

Solution: Let x be an accumulation point of a set S. If € int S, then we’re done. If
not, then we must show that € bd S. By definition of boundary point, this means: we
must show that any neighborhood N(z,¢) of z intersects both S and R\S.

So let N(x,¢) be such a neighborhood. Since x is an accumulation point of S we know, by
definition of accumulation point, that N*(z,¢) intersects S; since N*(z,¢) C N(z,¢), we
conclude that N(x,¢) intersects S as well. So we need only show that N(z,¢) intersects
R\S.

But we'’re assuming that = ¢ int S, so no neighborhood N(x,¢) of S can lie completely
inside S, so N(z,¢) must intersect R\:S, and we’re done. O

Section 3.5:

2. Mark each statement as True or False. Justify each answer.

(a) Some unbounded sets are compact. Solution: False. By the Heine-Borel Theorem,
compact = bounded, so by the contrapositive, not bounded = not compact.

(b) If S is a compact subset of R, then there is at least one point in R that is an
accumulation point of S. Solution: False. The set S = {3} is compact, but has no
accumulation points in R.

(c) If S compact and x is an accumulation point of S, then z € S. Solution: True. If S
is compact, then it’s closed, by the Heine-Borel Theorem. But a closed set contains
all of its accumulation points, by Theorem 3.4.17(a).

(d) If S is unbounded, then S has at least one accumulation point. Solution: False.
The set N is unbounded, but has no accumulation points.

(e) Let F ={A;: i€ N} and suppose that the intersection of any finite subfamily of F
is nonempty. If NF = (), then for some k € N, A, is not compact. Solution: True.
Theorem 3.5.7 tells us the following: Let F = {A;: ¢ € N} and suppose that the
intersection of any finite subfamily of F is nonempty. If each A; is compact, then
the intersection of the A;’s is nonempty. The contrapositive of this last statement is:
If NF = 0, then for some k € N, A is not compact. s

3. Show that each subset of R is not compact by describing an open cover for it that has
no finite subcover. (c¢) N Solution: An open cover of Nis C = {(n — §,n+ 1): n € N}
(clearly N is contained in the union of these sets, and clearly each of the intervals in the
collection is open). To prove that this open cover has no finite subcover, let B be a finite
collection of the intervals (n — %, n+ }1) Let ng be the largest of the integers n appearing;
that is, no = max{n: (n — 1,n + ;) € B}. Note that no + 1 is not in any of the intervals



making up B, since clearly, an upper bound for the union of the intervals in B is ng + i.
So N is not contained in B, so we have found an open cover C of N that has no finite
subcover.

4. Prove that the intersection of any collection of compact sets is compact. Solution:
Let C be a collection of compact sets. By definition of intersection,

NeecC C B,

where B is any one of the sets in C. By assumption, B is bounded, and clearly any subset
of a bounded set is bounded. (This follows, for example, from Exercise 8, Section 3.3.)
So NeecC' is bounded.

Moreover, each element of C is closed, and therefore so is NegeeC, by Corollary 3.4.11(a).
So NeecC is closed and bounded, and is therefore compact, by the Heine-Borel Theorem.

Section 4.1:

2. Mark each statement as true or false. Justify each answer.

(a) If s, — 0, then for every € > 0 there exists N € N such that n > N implies s, < €.
Solution: True. The definition of limit tells us that, if s,, — 0, then for every ¢ > 0
there exists N € N such that n > N implies |s,| < e. But |s,| <e = — < s, < ¢,
which certainly imples s,, < €.

(b) If for every € > 0 there exists N € N such that n > N implies s, < ¢, then s,, — 0.
Solution: False. Consider s,, = —3. Since —3 < 0, it’s certainly true that, if ¢ > 0,
then for alln > 1, s, <e. But s, /A 0.

(c) Given sequences (s,) and (a,), if, for some s € R, k& > 0 and m € N we have
|sn — s| < klay,| for all n > m, then lim s,, = s. Solution: False. For this to be true,
we would need the extra condition a,, — 0. For example, let s,, = 5+ %, s=2, k=3,
and a,, = 2n. For all integers n > 1, we have |s,—s| = |[5+2—2| = 3+ < k|a,| = 6n,
But s, /4 0.

(d) If s, — s and s, — t, then s = t. Solution: True. This is Theorem 4.1.14.

6. Using only Definition 4.1.2, prove the following.

(¢) lim ™l = 4. Solution: Let ¢ > 0. [We want |‘§1"T+31 — 4] = -t to be < ¢ for n large

enough. Solving 11/(n+3) < € gives n > (11 — 3¢)/e. So here’s what we write.] Let
N € N be any integer larger than 11/e — 3. Then
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(d) lim®2% = 0. Solution: Let ¢ > 0. [We want |(sinn)/n — 0| = |sinn|/n < e. But
|sinn| <1 for all n, so it will be enough to have 1/n < €, or n > 1/¢.] Let N be any
integer larger than 1/e. Then

sinn |sinn| 1 1
— () =—< < —=c
n n n 1/e
So .
lim " = 0.
n

13. Suppose that (a,), (b,), and (¢,) are sequences such that a, < b, < ¢, for all n € N
and such that lim a,, = lim ¢, = b. Prove than limb, = b. (Note: this result is sometimes
called the squeeze law.)

Solution: Let ¢ > 0. [We want to show that |b, — b| < ¢ for n large enough. The idea is
that both a, and ¢, will be close to b for n large enough, and since b, is in between a,,
and ¢,, b has nowhere to go other than b. Here’s how we make this formal.|

Since a, < b, < ¢,, we have
a,—b<b,—b<c,—Db. (SQ1)

(I've called this equation (SQ1) to remind us of the squeeze law.)

Let N; € N be such that n > Ny = |a,, — b|] < €. Note that, since x < |z| always, we find
that, for such n, we have a,, — b < ¢, or, multiplying by —1,

—c < a, —b. (SQ2)

Now let Ny € N be such that n > Ny = |c, — b| < &. Note that, since ¢, — b < |c, — b|
always, we find that, for such n, we have

cn—b<e. (SQ3)

So suppose N = max{ Ny, No}. Then for n > N, both (SQ2) and (SQ3) are true. Putting
this together with (SQ1) tells us that, for n > N,

—e<a,—b<b,—-b<c¢,—b<e,

which certainly implies —e < b, — b < &, which is the same as saying |b, — b| < €. So
b, — b. O



