MATH 3000: Analysis I HW Assignment 3: Solutions to Selected Exercises

Assignment:

Section 3.1 (pp. 108-113): Exercises 2, 13; Section 3.2 (pp. 120-122): Exercises 2,
3(a)(e)(f)(j), 5, 7, 12; Section 3.3 (pp. 131-134): Exercises 1, 2, 3(a)(b)(c)(d)(f)(i)(m)
(n), 4, 8, 10.

Section 3.1:
2. Mark each statement as True or False. Justify each answer.

(a) A proof using mathematical induction consists of two parts: establishing the basis for
induction and verifying the induction hypothesis. Solution: False. A proof using
mathematical induction consists of two parts: establishing the basis for induction
and verifying the induction step.

(b) Suppose m is a natural number greater than 1. To prove P(k) is true for all k > m,
we must first show that P(k) is false for all k£ such that 1 < k < m. Solution:
False. Whether P(k) is true for all k& > m might have nothing to do with whether
P(k) is false for all k£ such that 1 < k < m. Rather, to prove P(k) is true for all
k > m (using induction), we must first show that P(k) is true for k = m.

13. Prove that 52" — 1 is a multiple of 8 for all n € N.
Solution: Let A, be the statement “5?" — 1 is a multiple of 8.”

Is A; true? 5% — 1 = 24, which is a multiple of 8. So A; is true.

52k 52k

Now assume Ag. So — 1 is a multiple of 8: say — 1 = 8m, for some m € Z. Then

52D 1 = 25.5% 1 = 25.(52F —1)+25—1 = 25-(5% —1)424 = 25-8m+24 = 8-(25m+3),

so Ay, follows.

Since A; is true and Ay = Ajyq for all £ € N, we find by mathematical induction that
A, is true for all n € N.

Section 3.2:

2. Mark each statement as True or False. Justify each answer.

(a) Axioms Al to A5, M1 to M5, DL, and O1 to O4 describe an algebraic system known
as an ordered field. Solution: True. It says so right in the book.



(b) If z,y € R and x < y + ¢ for every £ > 0, then z < y. Solution: False. 5 <5+ ¢
for every € > 0, but 5 £ 5.

(c) Ifz,y € R, then |[x+y| = |z|+]|y|. Solution: False. If z,y € R, then |z+y| < |z|+]y|
(this is the triangle inequality), but the two sides are not necessarily equal. For
example, | —3 + 5| # | — 3|+ |5].

3. Let x,y and z be real numbers. Prove the following.

(a) —(—z) = x. Solution: Start with the equation x + (—z) = 0, true by Axiom Ab.
By Axiom A1, we can add —(—z) to both sides, to get

7+ (=2) + (=(=2)) = 0+ (=(=2)). (1)

But —(—=x) is, by definition, the thing that, when added to —x, gives you zero. So
the left side of (1) equals x 4 0, which equals = by Axiom A4. The right side equals
—(—x), again by Axiom A4. The two sides are equal, so —(—xz) = z, as required.

[

(e) If x # 0, then 22 > 0. Solution: If z # 0 then, by Axiom O1, we have z > 0 or
x < 0. We consider these two cases. (i) x > 0: multiply both sides by x. By Axiom
O4, the direction of the inequality doesn’t change, so we get 22 > 0- 2 = 0, the
last step by Theorem 3.2.2(b). (ii) < 0: multiply both sides by x. By Theorem
3.2.2(g), the direction of the inequality changes, so we get 2% > 0 -z = 0, the last
step by Theorem 3.2.2(b). So if x # 0, then z? > 0. O

(f) 0 < 1. Solution: By Axiom M4, 1 # 0. So by part (f) of this exercise, 1-1 > 0. But
By Axiom M4, 1-1=1. So1=1-1> 0, and we’re done. n

(j) If0 < x <y, then 0 < 1/y < 1/x. Solution: Suppose 0 < = < y. Since z
and y are both nonzero, the inverses 1/x and 1/y exist, by axiom M5. Note that
x>0= 1/z >0 as well. Why? Well, 1/x # 0 by Axiom M5. Moreover, if 1/x were
negative, then multiplying the equation x > 0 (which is true by assumption) by 1/x
would give z - (1/2) < 0 by Theorem 3.2.2(g), or 1 < 0, which is false by part (f) of
this exercise.

Similarly, 1/y > 0. So we can multiply both sides of the given inequality z < y by
1/x and then by 1/y, and the direction of the inequality doesn’t change, by Axiom
04. We get
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The left hand side equals (1/y) - 1 = 1/y, by Axioms M4 and M5. The right hand
side equals (1/z) - (1/y) - y by Axiom M2, which equals (1/x) -1 = (1/z) by Axioms
M4 and M5. So we have shown that 1/y < 1/x. But we also know that 1/y > 0, so
we have 0 < 1/y < 1/x.



12. Let S = {a,b} and define two operations & and ® on S by the following charts:

©la b Rla b
ala b ala a
blb a bla b

(a) Verify that S together with @ and ® satisfies the axioms of a field.

Solution: This is a long problem, because we need to show that Axioms A1-A4, M1-M4,
and DL are satisfied. We’ll leave out some parts of this, but will get across the main ideas.

A1, M1: This just says that @& and ® are closed and well-defined. The tables show they're
closed, because the result of the @& or ® of any two elements of S is an element of S. That
@ and ® are well-defined follows from the fact that they’re defined by the tables!

A2, M2: Note that showing either of these operations is commutative amounts to showing
that the entry in the ¢th row and jth column of either table equals the entry in the jth row
and ith column. There are only eight things to check (four for each table), and this can
be done case-by-case. (E.g. from the ® table, a®b=aand b®a=a,s0a®b=>b®a.)

A3, M3: Let’s start with @. We need to show that Vz,y,z € S,z ® (y D z2) = (z D y) ® =.
Note that there are eight choices for the quantity on the left: two choices for x, two for y,
and two for z. Similarly on the right. For example, from the table, a® (bda) = a®b = b,
while (a®b)Ba=0®a=0>. Soa®d (bda)=(adb)®a. And so on down the line. And
similarly for M3.

A4, M4: We check directly that a ® a = a and b @ a = b, and that no other element y of
S satisfies © @ y = x for all x € S. So our “0” element is a. Similarly, we check that our
“1” element is b.

A5, M5: ada=a=0andb+b=a=0,s0a=—aand b= —b. Similarly, b@b=0=1,
so b=1/b. (We don’t need to check for 1/a, since a = 0, so it has no “reciprocal.”)

DL: There are eight ways of constructing an expression z ® (y & z): two choices for z, two
for y, and two for z. Actually there’s some redundancy here, since we have already seen
that @ is commutative, so we already know, for example, that a ® (b @ a) = a ® (a ® b).
So there are only four choices: a ® (a ®a), a®@ (a®b), bR (a® a), and b® (a B b). Just
check that each one equals the corresponding quantity (x ® y) ® z, and you're done.  [J

(b) Identify the elements of S that are “0,” “1,” and “—1.” Solution: We already
identified that a = 0 and b = 1 above. By definition, —1 is what you add to 1 (that is, to
b) to get 0 (that is, to get a) so by the first table, —1 = b.

Section 3.3:

1. Mark each statement as true or false. Justify each answer.

(a) If a nonempty subset of R has an upper bound, then it has a least upper bound.
Solution: True. This is the completeness axiom.



(b) If a nonempty subset of R has an infemum, then it is bounded. Solution: False.
(0, 00) has an infemum but is not bounded.

(c) Every nonempty bounded subset of R has a maximum and a minimum. Solution:
False. (0,1) has no minimum or maximum.

(d) If m is an upper bound of S and m’ < m, then m’ is not an upper bound of S.
Solution: False. This would be true with “least upper bound” in place of “upper
bound,” but is false as is. E.g. 5 is an upper bound for [0,3) and 4 < 5, but 4 is an
upper bound for [0, 3) as well.

(e) If m =inf S and m’ < m, then m' is a lower bound of S. Solution: True. To say
that m = inf S is to say that m < x for every x € S. If this is the case, and m’ < m,
then m’ < x for every = € S as well, so m/’ is also a lower bound for S.

(f) For each real number x and each ¢ > 0, there exists n € N such that ne > z.
Solution: True. This is Theorem 3.3.10, with x replaced by € and y replaced by .

8. Let S and T be nonempty bounded subsets of R with S C T. Prove that infT" <
inf S <supS <supT.

Solution: We first show that inf 7" < inf S: if z € S, then x € T so, by definition of inf,
we have inf T" < z. This shows that inf 7" is < every element of .S, so inf T" is a lower bound
for S, and is therefore no larger than the greatest lower bound for S, so inf 7" <inf S.

We next show that inf S < supS: let z € S. Then, by definition of upper and lower
bounds, inf S <z <supS. So inf S <supS.

Finally, we show that sup .S <supT: if z € S, then x € T so, by definition of sup, we have
supT > x. This shows that supT is > every element of S, so supT is an upper bound
for S, and is therefore no smaller than the least upper bound for S, so sup .S < supT.

10. (a) Prove: if z and y are real numbers with z < y, then there are infinitely many
rational numbers in the interval [z, y].

Solution: Let A, be the statement “if x and y are real numbers with x < y, then there
are n rational numbers in the interval [z, y].” We prove by induction that A, is true for
all n € N. First: A; is true by Theorem 3.3.13. Next: suppose Ay is true. That is, for real
numbers x and y with = < y, there are k rational numbers z1, x5, ...,z in the interval
[z,y]. Assume these k& numbers are arranged in increasing order. By Theorem 3.3.13,
there is a rational number zy with x1 < xg < 5. This gives us k + 1 rational numbers in

[z, y].

So A; is true and Ay, implies Ag,1. So A, is true for all n, meaning [x, y] contains infinitely
many rational numbers,; for all x,y € R with z < y.

(b) Repeat part (a) for irrational numbers.

Solution: Similar to part (a), but use Theorem 3.3.15.



