Assignment:

S-POP Part B(ii): Exercises B(ii)-2,4,7; **S-POP Part B(iii):** Exercises B(iv)-2, 4, 5; **Text Section 2.3 (pp. 77–82):** Exercises 2, 4a, 9, 12, 13, 27.

S-POP Part B(ii):

4. Show that, for any sets A, B, and C, we have $A \cap B \subseteq A \cup C$.

Solution: Let $x \in A \cap B$. Then $x \in A$ and $x \in B$ by definition of intersection, so certainly $x \in A$. But then $x \in A \cup C$ by definition of union.

So
$$A \cap B \subseteq A \cup C$$
.

7. Using the strategy of Proposition B(ii)-2, prove that, for any sets X, Y, and Z,

$$X \cup (Y \cap Z) = (X \cup Y) \cap (X \cup Z).$$

Solution: Though there are many ways to prove this, you are asked in this exercise to prove it "Using the strategy of Proposition B(ii)-2." This means: show that any x in the set on the left is contained in the set on the right, and vice versa.

So let's do that: let $X \cup (Y \cap Z)$. Then either $x \in X$ or $x \in Y \cap Z$. In the first case $(x \in X)$, we have $x \in X \cup Y$ and $x \in X \cup Z$ by definition of union, so $x \in (X \cup Y) \cap (X \cup Z)$ by definition of intersection. In the second case $(x \in Y \cap Z)$, we have $x \in Y$ and $x \in Z$ by definition of intersection, so $x \in X \cup Y$ and $x \in X \cup Z$ by definition of union, so again, $x \in (X \cup Y) \cap (X \cup Z)$ by definition of intersection. So in either case, $x \in (X \cup Y) \cap (X \cup Z)$. So $X \cup (Y \cap Z) \subseteq (X \cup Y) \cap (X \cup Z)$.

Now let $x \in (X \cup Y) \cap (X \cup Z)$. Then $x \in X \cup Y$ and $x \in X \cup Z$, by definition of intersection. We consider two cases: $x \in X$ and $x \notin X$. In the first case $(x \in X)$, we have $X \cup (Y \cap Z)$ by definition of intersection. In the second case $(x \notin X)$, the fact that $x \in X \cup Y$ and $x \in X \cup Z$ implies $x \in Y$ and $x \in Z$, by definition of union. But then $x \in Y \cap Z$ by definition of intersection, so $x \in X \cup (Y \cap Z)$ by definition of union. So in either case, $x \in X \cup (Y \cap Z)$. So $(X \cup Y) \cap (X \cup Z) \subseteq X \cup (Y \cap Z)$.

Since
$$X \cup (Y \cap Z) \subseteq (X \cup Y) \cap (X \cup Z)$$
 and $(X \cup Y) \cap (X \cup Z) \subseteq X \cup (Y \cap Z)$, we conclude that $X \cup (Y \cap Z) = (X \cup Y) \cap (X \cup Z)$.

S-POP Part B(iii):

4. Prove that $\exists k \in \mathbb{Z}$ such that k can be expressed as a sum of two squares in two different ways. Hint: you don't have to go too far; there's a k < 100 that works.

Solution: $50 = 25 + 25 = 5^2 + 5^2 = 49 + 1 = 7^2 + 1^2$.

5. (a) Prove that:

$$\forall x \in \mathbb{R}, \exists y \in \mathbb{R} \colon x > y.$$

(b) Prove that the statement

$$\exists y \in \mathbb{R} \colon \forall x \in \mathbb{R}, x > y$$

is false.

Solution: (a): given $x \in \mathbb{R}$, let y = x - 1. Then x > y. So $\forall x \in \mathbb{R}, \exists y \in \mathbb{R} : x > y$.

(b): Suppose $\exists y \in \mathbb{R}$ that is larger than any real number x. Then in particular y > y, which is false.

Text Section 2.3 (pp. 77-82):

- 2. Mark each statement as true or false. Justify your answer.
- (a) If $f: A \to B$ and C is a nonempty subset of A, then f(C) is a nonempty subset of B. Solution: TRUE: if $x \in A$ then $f(x) \in f(C)$, so f(C) is nonempty.
- (b) If $f: A \to B$ is surjective and $y \in B$, then $f^{-1}(y) \in A$. Solution: FALSE, though this is a bit tricky. Really we should say $f^{-1}(\{y\}) \subset A$, since technically, the inverse image of a set is a set, not a point. On the other hand, if f is also *injective*, then $f^{-1}(y)$ is a single point: namely, it's the image of y under the inverse function f^{-1} .
- (c) If $f: A \to B$ and D is a nonempty subset of B, then $f^{-1}(D)$ is a nonempty subset of A. **Solution: FALSE.** This need not hold if f is not surjective. For example, consider the function $f: \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^2$. Then [-2, -1] is a nonempty subset of \mathbb{R} , but $f^{-1}(D)$ is empty, since nothing maps to negative numbers under f.
- (d) The composition of two surjective functions is always surjective. **Solution: TRUE.** See Theorem 2.3.20(a), p. 72.
- (e) If $f:A\to B$ is bijective, then $f^{-1}:B\to A$ is bijective. **Solution: TRUE.** See Theorem 2.3.24(a), p. 74.
- (f) The identity function maps \mathbb{R} onto $\{1\}$. Solution: FALSE. The identify function f is defined by f(x) = x. This maps \mathbb{R} onto \mathbb{R} .
- **10.** In each part, find a function $f: \mathbb{N} \to \mathbb{N}$ that has the desired properties.
- (a) surjective, but not injective. **Solution:** $f(n) = \begin{cases} n/2 & \text{if } n \text{ is even,} \\ (n+1)/2 & \text{if } n \text{ is odd.} \end{cases}$ (E.g. f(3) = f(4) = 2.)

- (b) injective, but not surjective. **Solution:** f(n) = 2n.
- (c) neither surjective nor injective **Solution:** f(n) = 1.
- (d) bijective **Solution**: f(n) = n.
- **12.** Given $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$, we define the sum f+g by (f+g)(x) = f(x) + g(x) and the product fg by $(fg)(x) = f(x) \cdot g(x)$ for all $x \in \mathbb{R}$. Find counterexamples for the following.
- (a) If f and g are bijective, then the sum f + g is bijective. Solution: f(x) = x and g(x) = -x.
- (b) If f and g are bijective, then the product fg is bijective. **Solution:** f(x) = x and g(x) = -x.
- **13.** Consider the function $f: A \to B$ illustrated in Figure 11.
- (a) Find f(S), where $S = \{2, 3, 4, 5\}$. Solution: $f(S) = \{b, c, e\}$.
- (b) Find $f^{-1}(T)$, where $T = \{a, b, d\}$. Solution: $f^{-1}(T) = \{1, 2\}$.