
MATH 3000: Analysis I HW Assignment 1: Solutions to Selected Exercises

Assignment from S-POP:

Part B(i): Exercises B(i)-1, 3, 4, 6, 7, 8, 10; Part B(iv): Exercises B(iv)-1, 4; Part
B(v): Exercises B(v)-1, 3, 6; Part B(vii): Exercises B(vii)-1, 2, 3.

Part B(i):

3. Let a, b, and c be integers. Recall that we say “a divides b,” written a|b, if there exists
an integer q such that b = aq. (a) Prove that, if a|b and a|c, then a|(b + c). (b) Prove
that, if a|b, then a|nb for any integer n.

Solution: (a) Assume a|b and a|c. Then ∃m,n ∈ Z : b = am and c = an. Then b + c =
a(m+n), and since m+n ∈ Z, we conclude that a|(b+ c). So a|b and a|c⇒ a|(b+ c).

(b) Assume a|b. Then ∃m ∈ Z : b = am. So, if n ∈ Z, we have bn = (am)n = a(mn).
Since mn ∈ Z, we conclude that a|bn. So a|b⇒ a|nb for any integer n.

4. Supply a proof by contraposition of Proposition B(i)-1E.

Solution: We wish to show that, if n − 1 is not an odd number, then n is not an even
number. So assume that n− 1 is not odd. Then n− 1 is even. (This follows, for example,
from the division algorithm, page 4 of S-POP.). So n− 1 = 2k for some k ∈ Z. But then
n = 2k + 1 for some k ∈ Z, so n is odd, so n is not even. So n− 1 is not odd ⇒ n is not
even, or equivalently, by contraposition, n is even ⇒ n− 1 is odd.

8. Consider the converse to the statement of Exercise B(i)-3(a). Is this converse statement
true? If so, prove it. If not, show that it’s false by counterexample.

Solution: The converse to the statement P ⇒ Q is the statement Q ⇒ P . So we are
asking: Is the statement “if a|(b + c), then a|b and a|c” true, for all integers a, b, c? The
answer is no. Proof by counterexample: 3|(7 + 5) but 3 6 | 7 and 3 6 | 5.

Part B(iv):

4. Prove that, if C ∈ R, then

lim
n→∞

Cxn = C lim
n→∞

xn,

providing the limit on the right exists.

Solution: Suppose limn→∞ xn exists: call this limit L. Let ε > 0 and let C be a constant:
we wish to show ∃N ∈ N such that, if n ≥ N , then |Cxn − CL| < ε.

We first consider the case C = 0. In this case, we have |Cxn−CL| = 0 < ε automatically,
and we’re done.



Now suppose C 6= 0. Since limn→∞ xn = L, there is, by definition of limit, an N ∈ N such
that, if n ≥ N , then |xn − L| < ε/|C|. But then, for such n,

|Cxn − CL| = |C| · |xn − L| < |C| · (ε/|C|) = ε,

and we’re done.

Part B(v):

3. Use mathematical induction to prove that, for any positive integer n,

d

dx
xn = nxn−1

(pretend you didn’t already know this, although it’s OK to assume it’s true for n = 1).
Hint: for the inductive step, use the product rule.

Solution: Let An be the statement “For any positive integer n, d
dx
xn = nxn−1.” To prove

this by induction, we need to prove that A1 is true, and that Ak ⇒ Ak+1.

First we need to demonstrate A1:
d
dx
x1 = 1x1−1. That is, we need to show that d

dx
x = 1.

But we know this to be true from elementary calculus.

Now assume that Ak is true, meaning d
dx
xk = kxk−1. Then, by A1 and the product rule,

d

dx
xk+1 =

d

dx
(xk · x)

= xk · d

dx
x + x · d

dx
xk

= xk · 1 + x · (kxk−1)

= xk + kxk = (k + 1)xk,

so Ak+1 follows. So we have proved by induction that An holds for all n ∈ N, and we are
done.

6. Let An be the statement

1 + 2 + 3 + · · ·+ n =
(2n + 1)2

8
.

Prove that if Ak is true for any positive integer k, then so is Ak+1. Is An true for all
positive integers n? Explain your answer.



Solution: Assume Ak: 1 + 2 + 3 + · · ·+ n = (2k + 1)2/8. Then

1 + 2 + 3 + · · ·+ k + 1 = (1 + 2 + 3 + · · ·+ k) + k + 1

=
(2k + 1)2

8
+ k + 1

=
(2k + 1)2

8
+

8(k + 1)

8

=
(2k + 1)2 + 8(k + 1)

8

=
4k2 + 12k + 9

8
=

(2(k + 1) + 1)2

8
,

so Ak+1 follows.

But note that the statement An is not true for any positive integer n, since we know that
1 + 2 + 3 + · · ·+ n = n(n + 1)/2 (see Proposition B(v)-1E), and

n(n + 1)

2
− (2n + 1)2

8
=

4n(n + 1− (2n + 1)2

8
=

1

8
= 0.

The point is that the inductive step Ak ⇒ Ak+1 is not always enough; you need the base
step A1 as well. And in this case A1 fails, since 1 6= (2 · 1 + 1)2/8 = 9/8.

Part B(vii):

1. Use proof by contradiction to show that there are no integers a and b with 6a+21b = 1.

Solution: Suppose there were such integers a and b. Note that 3|6 and 3|21. By Exercise
B(i)-1, parts (a) and (b), then, we have 3|(6a+21b), which by assumption equals 1, so 3|1.
This contradicts the fact that 3 6 | 1. So there are no integers a and b with 6a + 21b = 1.

3. Prove that there are infinitely many positive prime numbers of the form 4` + 3 (for `
an integer).

Solution: Assume it is not the case that there are infinitely many prime numbers of the
form 4` + 3: that is, assume there are finitely many, say K, prime numbers of the form
4` + 3. Denote these primes by p1, p2, . . . , pK .

Put M = 4p1p2 · · · pK − 1, and note that

M = 4(p1p2 · · · pK − 1) + 3,

so M is of the form 4` + 3. Because of this, M must have a prime divisor of the form
4`+ 3. Why? Because every positive integer, and therefore every prime, is of the form 4`,
4` + 1, 4` + 2, or 4` + 3. Since M is odd, it can’t be divisible by any integer of the form
4` or 4` + 2, because such numbers are even. So all prime divisors of M are of the form
4` + 1 or 4` + 3. But if all prime divisors of M were of the form 4` + 1, then by Exercise



B(v)-5, M would be too. Since M is not of this form, some prime divisor of M must be
of the form 4` + 3, as claimed.

Let p be any prime divisor of M such that p is of the form 4` + 3. Then p must equal
one of the primes p1, p2, . . . , pK , since these are the only primes of this form. Since p is
one of these primes, it certainly divides the product of all these primes, so p certainly
divides N = 4p1p2 · · · pK . But any integer dividing two integers divides their difference,
so p divides M −N .

On the other hand, by definition of M−N , we have M−N = −1. But −1 is not divisible
by any prime, so p cannot divide M −N .

So p|(M−N) and p6 | (M−N). Contradiction. So there are infinitely many prime numbers
of the form 4` + 3.


