MATH 3000: Analysis I HW Assignment 1: Solutions to Selected Exercises

Assignment from S-POP:

Part B(i): Exercises B(i)-1, 3, 4, 6, 7, 8, 10; Part B(iv): Exercises B(iv)-1, 4; Part
B(v): Exercises B(v)-1, 3, 6; Part B(vii): Exercises B(vii)-1, 2, 3.

Part B(i):

3. Let a, b, and ¢ be integers. Recall that we say “a divides b,” written a|b, if there exists
an integer g such that b = aq. (a) Prove that, if a|b and alc, then a|(b+ ¢). (b) Prove
that, if a|b, then a|nb for any integer n.

Solution: (a) Assume a|b and alc. Then Im,n € Z : b = am and ¢ = an. Then b + ¢
a(m-+n), and since m+n € Z, we conclude that a|(b+c¢). So a|b and a|c = a|(b+c).

o

(b) Assume alb. Then Im € Z : b = am. So, if n € Z, we have bn = (am)n = a(mn
Since mn € Z, we conclude that a|bn. So alb = a|nb for any integer n.
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4. Supply a proof by contraposition of Proposition B(i)-1g.

Solution: We wish to show that, if n — 1 is not an odd number, then n is not an even
number. So assume that n — 1 is not odd. Then n — 1 is even. (This follows, for example,
from the division algorithm, page 4 of S-POP.). So n — 1 = 2k for some k € Z. But then
n = 2k + 1 for some k € Z, so n is odd, so n is not even. So n — 1 is not odd = n is not
even, or equivalently, by contraposition, n is even = n — 1 is odd. O

8. Consider the converse to the statement of Exercise B(i)-3(a). Is this converse statement
true? If so, prove it. If not, show that it’s false by counterexample.

Solution: The converse to the statement P = () is the statement () = P. So we are
asking: Is the statement “if a|(b+ ¢), then a|b and a|c” true, for all integers a, b, c? The
answer is no. Proof by counterexample: 3|(7 +5) but 3 7 and 3/ 5.

Part B(iv):

4. Prove that, if C' € R, then

lim Cz, = C lim z,,
n—oo n—oo

providing the limit on the right exists.

Solution: Suppose lim,,_,, =, exists: call this limit L. Let € > 0 and let C' be a constant:
we wish to show 3N € N such that, if n > N, then |Cx, — CL| < e.

We first consider the case C' = 0. In this case, we have |Cz,, —CL| = 0 < ¢ automatically,
and we’re done.



Now suppose C' # 0. Since lim,, o, z,, = L, there is, by definition of limit, an N € N such
that, if n > N, then |z, — L| < ¢/|C|. But then, for such n,

|Cn = CLI = |C] - [xn — L] <[C] - (¢/[C]) = ¢,

and we’re done. O

Part B(v):

3. Use mathematical induction to prove that, for any positive integer n,
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(pretend you didn’t already know this, although it’s OK to assume it’s true for n = 1).
Hint: for the inductive step, use the product rule.

Solution: Let A, be the statement “For any positive integer n, %x” = nz" 1" To prove

this by induction, we need to prove that A; is true, and that Ay = Axy1.

First we need to demonstrate A;: -La' = 12'~!. That is, we need to show that Lz = 1.
But we know this to be true from elementary calculus.

Now assume that A, is true, meaning %xk —= ka¥~'. Then, by A; and the product rule,
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= 2F 4 kb = (k + 1)aF,
so A1 follows. So we have proved by induction that A,, holds for all n € N, and we are
done. O
6. Let A, be the statement

(2n + 1)2.

L4243+ +n="—

Prove that if Ay is true for any positive integer k, then so is Ag 1. Is A, true for all
positive integers n? Explain your answer.



Solution: Assume Ay: 14+2+3+---+n = (2k+ 1)?/8. Then

1+243+-+k+1=1+2+34+---+k) +k+1
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so Agyq follows.

But note that the statement A, is not true for any positive integer n, since we know that
14243+ --+n=n(n+1)/2 (see Proposition B(v)-1g), and

n(n+1) (2n+1)2_4n(n+1—(2n+1)2_1_0
2 8 8 8

The point is that the inductive step A, = Aj,1 is not always enough; you need the base
step A; as well. And in this case A; fails, since 1 # (214 1)?/8 = 9/8.

Part B(vii):

1. Use proof by contradiction to show that there are no integers a and b with 6a+21b = 1.

Solution: Suppose there were such integers a and b. Note that 3|6 and 3|21. By Exercise
B(i)-1, parts (a) and (b), then, we have 3|(6a+21b), which by assumption equals 1, so 3|1.
This contradicts the fact that 3 f1. So there are no integers a and b with 6a + 210 = 1.

O

3. Prove that there are infinitely many positive prime numbers of the form 4¢ + 3 (for ¢
an integer).

Solution: Assume it is not the case that there are infinitely many prime numbers of the
form 4¢ + 3: that is, assume there are finitely many, say K, prime numbers of the form
40 4 3. Denote these primes by p1,p2, ..., Pk-

Put M = 4pyps - - - px — 1, and note that
M = 4(pipy---px — 1) + 3,

so M is of the form 4¢ + 3. Because of this, M must have a prime divisor of the form
40+ 3. Why? Because every positive integer, and therefore every prime, is of the form 4/,
40+ 1, 40 4 2, or 4¢ + 3. Since M is odd, it can’t be divisible by any integer of the form
40 or 4¢ + 2, because such numbers are even. So all prime divisors of M are of the form
40+ 1 or 4¢ + 3. But if all prime divisors of M were of the form 4¢ + 1, then by Exercise



B(v)-5, M would be too. Since M is not of this form, some prime divisor of M must be
of the form 4¢ + 3, as claimed.

Let p be any prime divisor of M such that p is of the form 4¢ + 3. Then p must equal
one of the primes py1, po, ..., pxg, since these are the only primes of this form. Since p is
one of these primes, it certainly divides the product of all these primes, so p certainly
divides N = 4ppy - - - pr. But any integer dividing two integers divides their difference,
so p divides M — N.

On the other hand, by definition of M — N, we have M — N = —1. But —1 is not divisible
by any prime, so p cannot divide M — N.

So p|(M—N) and pf(M—N). Contradiction. So there are infinitely many prime numbers
of the form 4¢ + 3. O



