Section 3.3, Exercise 8. Let S and T be nonempty bounded subsets of \mathbb{R} with $S \subseteq T$. Prove that

$$\inf T \le \inf S \le \sup S \le \sup T.$$

Proof. Let S and T be nonempty bounded subsets of \mathbb{R} with $S \subseteq T$. Since S and T are nonempty and bounded, inf S, inf T, sup S, and sup T all exist.

Since S is nonempty, there exists some element x of S. By definition of inf and sup, inf $S \le x$ and $x \le \sup S$, so inf $S \le x \le \sup S$, so inf $S \le \sup S$.

We show that $\inf T \leq \inf S$: if $x \in S$, then $x \in T$ (since $S \subseteq T$) so, by definition of \inf we have $\inf T \leq x$. This shows that $\inf T$ is less than or equal to every element of S, so $\inf T$ is a lower bound for S. But every lower bound is less than or equal to the greatest lower bound, so $\inf T \leq \inf S$.

Next, we show that $\sup S \leq \sup T$: if $x \in S$, then $x \in T$ (since $S \subseteq T$) so, by definition of \sup , we have $x \leq \sup T$. This shows that $\sup T$ is greater than or equal to every element of S, so $\sup T$ is an upper bound for S. But every upper bound is greater than or equal to the least upper bound, so $\sup S \leq \sup T$.

We've shown that $\inf T \leq \inf S$ and $\inf S \leq \sup S$ and $\sup S \leq \sup T$. So, for any nonempty bounded subsets S and T of \mathbb{R} with $S \subseteq T$, we have

$$\inf T \le \inf S \le \sup S \le \sup T.$$

Section 3.3, Exercise 12(a). Prove: if x and y are real numbers with x < y, then there are infinitely many rational numbers in the interval [x, y].

Proof. Let A(n) be the statement "if x and y are real numbers with x < y, then there are n rational numbers in the interval [x, y]." We prove by induction that A(n) is true for all $n \in \mathbb{N}$.

First: by Theorem 3.3.13, there exists a rational number q_1 in the interval (x, y), and therefore in the interval [x, y]. So A(1) is true.

Next: suppose A(k) is true. That is, for real numbers x and y with x < y, there are k rational numbers q_1, q_2, \ldots, q_k in the interval [x, y]. Assume these k numbers are arranged in increasing order. By Theorem 3.3.13, there is a rational number q_0 with $q_1 < q_0 < q_2$. Note that q_0 cannot be any of the numbers $q_1, q_2, q_3, \ldots, q_k$, since $q_1 < q_0 < q_2 < q_3 < \cdots < q_k$. This gives us k+1 rational numbers in [x,y]. So A(k+1) follows.

So A(1) is true and A(k) implies A(k+1) for all $k \in \mathbb{N}$. So by induction, A(n) is true for all n, meaning [x,y] contains infinitely many rational numbers, for all $x,y \in \mathbb{R}$ with x < y.