
MATH 3001–001: Analysis I SOLUTIONS Fall 2025

EXAM 2: SOME PRACTICE PROBLEMS

1. Mark each statement as true or false. Justify each answer: if the answer is “True,” supply a
careful proof, using definitions and theorems from your fact sheet. If the answer is “False,”
supply an explicit counterexample, and explain why it’s a counterexample. (Please note: a

picture is not a proof.)

(a) For any set S ⊆ R, bdS ∩ intS = ∅.

(b) Any nonempty, bounded subset S ⊆ R has a max and a min (that is, there exists m ∈ §
such that m ≤ x for all x ∈ S, and there exists M ∈ S such that x ≤M for all x ∈ S).

(c) Any nonempty, bounded, closed subset S ⊆ R has a max and a min (that is, there exists
m ∈ S such that m ≤ x for all x ∈ S, and there exists M ∈ S such that x ≤ M for all
x ∈ S).

(d) For any nonempty subset S ⊆ R, S ′ ⊆ clS.

(e) For any nonempty subset S ⊆ R, S ′ ⊆ bdS.

(f) For any nonempty subset S ⊆ R, bdS ⊆ S ′.

(g) For any nonempty sets S, T ⊆ R, bdS ∪ bdT = bd(S ∪ T ).

(h) A nonempty subset S ⊆ R contains all of its interior points.

(i) For any nonempty sets S, T ⊆ R such that S ⊆ T , we have inf S ≤ inf T .

(j) For any nonempty subset S ⊆ R, each isolated point of S is also a boundary point of S.

(k) A compact set in R contains all of its boundary points.

(l) x ∈ R is an accumulation point of a set S ⊆ R iff ∀ε > 0 : N(x, ε) ∩ S 6= ∅.

(m) If x ∈ bdS, where S is a nonempty subset of R, then N∗(x, 0.01) ∩ S 6= ∅.

(n) S is open iff S = intS.

(o) Every neighborhood is an open set.

(p) The union of any collection of closed sets is closed.

(q) If sn → 0, then for every ε > 0 there exists N ∈ N such that n ≥ N implies sn < ε.

(r) If for every ε > 0 there exists N ∈ N such that n ≥ N implies sn < ε, then sn → 0.

(s) Given sequences (sn) and (an), if, for some s ∈ R, k > 0 and m ∈ N we have |sn−s| ≤ k|an|
for all n > m, then lim sn = s.

(t) If sn → s and sn → t, then s = t.

(u) If sn → s and sntn → st, where sn 6= 0 for any n ∈ N and s 6= 0, then tn → t.

(v) If (sn) and (tn) are divergent sequences, then (sn + tn) diverges.

(w) If (sn) and (tn) are divergent sequences, then (sntn) diverges.

(x) If (sn) and (sn + tn) are convergent sequences, then (tn) converges.
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2. Find the max, min, sup, and inf of each of the following sets. If the quantity in question does
not exist, say so. (You don’t need to prove or explain anything here.)

(a) {0, 1}

(b) (0, 1)

(c) {0− 1
n

: n ∈ N}

(d)
⋃∞

n=1

(
1 + 3

n
, 1− 3

n

)
(e)

{
(−1)n

(
3 + 1

n

)
: n ∈ N

}
(f) {r ∈ Q : r2 < 5}

(g) {r ∈ Q : r2 ≤ 5}

3. Provide an example of a set that has infinitely many accumulation points, none of which are
interior points.

4. Let S and T be subsets of R. Find a counterexample for each of the following.

(a) If P is the set of all isolated points of S, then P is a closed set.

(b) If S is open, then int(clS)) = S.

(c) bd(clS) = bdS.

(d) bd(S ∪ T ) = (bdS) ∪ (bdT ).

5. Fill in the blanks to prove the following.

Theorem. An accumulation point of a set S is either an interior point of S or a boundary point
of S.

Proof. Let x ∈ S ′; we need to conclude that x ∈ intS ∪ bdS . If x ∈ intS, then
we’re done. So suppose x 6∈ intS. We must show that x ∈ bdS . By definition
of boundary point, this means: we must show that any neighborhood N(x, ε) of x

intersects both S and R\S .

So let N(x, ε) be such a neighborhood. Since x is an accumulation point of S we know, by

definition of accumulation point, that N∗(x, ε) intersects S ; since N∗(x, ε) ⊆ N(x, ε),

we conclude that N(x, ε) intersects S as well. So we need only show that N(x, ε)

intersects R\S .

But we’re assuming that x 6∈ intS , so no neighborhood N(x, ε) can lie completely

inside S , so N(x, ε) must intersect R\S .

So any neighborhood N(x, ε) of x intersects both S and R\S .

Therefore, x ∈ S ′ ⇒ x ∈ intS ∪ bdS , and we’re done.
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6. Using only the definition of limit given on the fact sheet, show carefully that

lim
n→∞

4n + 3

n + 3
= 4.

7. Using only the definition of limit given on the fact sheet, show carefully that

lim
n→∞

n2 − n + 3

2n2 − 8
=

1

2
.

8. Using only the definition of limit given on the fact sheet, show carefully that

lim
n→∞

n3 − n + 3

2n2 − 8
= +∞.

9. Using only the definition of limit given on the fact sheet, show carefully that

lim
n→∞

n3 − n + 3

8− 2n2
= −∞.

10. Using any of the limit laws (item D(xiv) from the fact sheet), show carefully that

lim
n→∞

n2 − n + 3

2n2 − 8
=

1

2
.

11. (a) Find the interior, boundary, accumulation points, isolated points, and closure of the set

A = [−5, 1) ∪
{

2 +
1

n
| n ∈ N

}
.

You don’t need to justify your answers.

int A = (−5, 1)

bd A = {−5, 1, 2} ∪ {2 + 1
n
| n ∈ N}

A′ = [−5, 1] ∪ {2}

A\A′ = {2 + 1
n
| n ∈ N}

cl A = [−5, 1] ∪ {2} ∪ {2 + 1
n
| n ∈ N}

(b) Is A open, closed, or neither? Please explain carefully, using definitions and/or theorems
from your fact sheet.
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(c) Is A compact? Please explain carefully, using definitions and/or theorems from your fact
sheet.

12. Repeat the previous exercise for the set [0, 1]\Q of irrational numbers in the interval [0, 1].

13. Fill in in the blanks.

Theorem. The set N of natural numbers is not compact .

Proof. To show N is not compact, we need to find an open cover of N with no finite subcover.

That is, we need to find a collection C of open sets such that N is contained in

the union of the sets in C, but N is not contained in the union of any finite number of sets in

C .

Let C = {In : n ∈ N}, where In is the open interval In = (n − 1
2
, n + 1

2
). Then each In is open

(since In is an open interval), and certainly

N ⊆ ∪n∈NIn

because, if n is a positive integer, then n is in the interval In . So C is an open

cover of N.

To show that C has no finite subcover of N, consider any finite set of intervals of the form

(n − 1
2
, n + 1

2
). Let’s say there are K intervals in this finite set. List them in increasing order:

that is, list them as(
n1 −

1

2
, n1 +

1

2

)
,

(
n2 −

1

2
, n2 +

1

2

)
,

(
n3 −

1

2
, n2 +

1

2

)
, . . . ,

(
nK −

1

2
, nK +

1

2

)
, (∗)

where n1 < n2 < n3 < · · · < nK . (It’s a fact that every finite set of integers can be written in

increasing order; proof omitted.) Since the integer nK + 1 is larger than nK + 1
2
, we see that the

integer nK + 1 is not in any of the intervals in (∗), and therefore, is not in the union

of these intervals.

So we’ve shown that every finite subcover of the open cover C of N fails to cover N .

In other words, we’ve found an open cover of N with no finite subcover . So N is not

compact .

14. Consider the real numbers R, with the usual multiplication, denoted as usual by “·,” and with

an “addition” operator “@” defined by

x@ y = the mean (average) of x and y =
x + y

2
.

(a) Show that, with these definitions of addition “@” and multiplication “·,” the distributive

law holds. That is, show that

x · (y @ z) = (x · y) @ (x · z) ∀x, y, z ∈ R.
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(b) Use an explicit counterexample to show that, with this definition of addition @, the asso-

ciative law for addition, which is the statement that

x@(y@z) = (x@y)@z ∀x, y, z ∈ R,

does not hold.

15. Prove that the intersection of any collection of compact sets is compact.

16. Prove that, if sn → +∞ and k < 0, then ksn → −∞.
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