EXAM 2: SOME PRACTICE PROBLEMS

- 1. Mark each statement as true or false. Justify each answer: if the answer is "True," supply a careful proof, using definitions and theorems from your fact sheet. If the answer is "False," supply an *explicit* counterexample, and explain why it's a counterexample. (Please note: a picture is not a proof.)
 - (a) For any set $S \subseteq \mathbb{R}$, $\operatorname{bd} S \cap \operatorname{int} S = \emptyset$.
 - (b) Any nonempty, bounded subset $S \subseteq \mathbb{R}$ has a max and a min (that is, there exists $m \in \S$ such that m < x for all $x \in S$, and there exists $M \in S$ such that x < M for all $x \in S$).
 - (c) Any nonempty, bounded, closed subset $S \subseteq \mathbb{R}$ has a max and a min (that is, there exists $m \in S$ such that $m \leq x$ for all $x \in S$, and there exists $M \in S$ such that $x \leq M$ for all $x \in S$).
 - (d) For any nonempty subset $S \subseteq \mathbb{R}$, $S' \subseteq \operatorname{cl} S$.
 - (e) For any nonempty subset $S \subseteq \mathbb{R}$, $S' \subseteq \operatorname{bd} S$.
 - (f) For any nonempty subset $S \subseteq \mathbb{R}$, $\operatorname{bd} S \subseteq S'$.
 - (g) For any nonempty sets $S, T \subseteq \mathbb{R}$, $\operatorname{bd} S \cup \operatorname{bd} T = \operatorname{bd}(S \cup T)$.
 - (h) A nonempty subset $S \subseteq \mathbb{R}$ contains all of its interior points.
 - (i) For any nonempty sets $S, T \subseteq \mathbb{R}$ such that $S \subseteq T$, we have $\inf S \leq \inf T$.
 - (j) For any nonempty subset $S \subseteq \mathbb{R}$, each isolated point of S is also a boundary point of S.
 - (k) A compact set in \mathbb{R} contains all of its boundary points.
 - (1) $x \in \mathbb{R}$ is an accumulation point of a set $S \subseteq \mathbb{R}$ iff $\forall \varepsilon > 0 : N(x, \varepsilon) \cap S \neq \emptyset$.
 - (m) If $x \in \text{bd } S$, where S is a nonempty subset of \mathbb{R} , then $N^*(x, 0.01) \cap S \neq \emptyset$.
 - (n) S is open iff S = int S.
 - (o) Every neighborhood is an open set.
 - (p) The union of any collection of closed sets is closed.
 - (q) If $s_n \to 0$, then for every $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that $n \geq N$ implies $s_n < \varepsilon$.
 - (r) If for every $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that $n \geq N$ implies $s_n < \varepsilon$, then $s_n \to 0$.
 - (s) Given sequences (s_n) and (a_n) , if, for some $s \in \mathbb{R}$, k > 0 and $m \in \mathbb{N}$ we have $|s_n s| \le k|a_n|$ for all n > m, then $\lim s_n = s$.
 - (t) If $s_n \to s$ and $s_n \to t$, then s = t.
 - (u) If $s_n \to s$ and $s_n t_n \to st$, where $s_n \neq 0$ for any $n \in \mathbb{N}$ and $s \neq 0$, then $t_n \to t$.
 - (v) If (s_n) and (t_n) are divergent sequences, then $(s_n + t_n)$ diverges.
 - (w) If (s_n) and (t_n) are divergent sequences, then $(s_n t_n)$ diverges.
 - (x) If (s_n) and $(s_n + t_n)$ are convergent sequences, then (t_n) converges.

2.	Find the max, m	nin, sup, and inf of ea	ach of the following sets.	If the quantity	in question does
	not exist, say so.	(You don't need to	prove or explain anything	g here.)	

- (a) $\{0,1\}$
- (b) (0,1)
- (c) $\{0 \frac{1}{n} : n \in \mathbb{N}\}$
- (d) $\bigcup_{n=1}^{\infty} \left(1 + \frac{3}{n}, 1 \frac{3}{n}\right)$
- (e) $\{(-1)^n(3+\frac{1}{n}): n \in \mathbb{N}\}$
- (f) $\{r \in \mathbb{Q} : r^2 < 5\}$
- $(g) \quad \{r \in \mathbb{Q} : r^2 \le 5\}$
- **3.** Provide an example of a set that has infinitely many accumulation points, none of which are interior points.
- **4.** Let S and T be subsets of \mathbb{R} . Find a counterexample for each of the following.
 - (a) If P is the set of all isolated points of S, then P is a closed set.
 - (b) If S is open, then int(cl S) = S.
 - (c) $\operatorname{bd}(\operatorname{cl} S) = \operatorname{bd} S$.
 - (d) $\operatorname{bd}(S \cup T) = (\operatorname{bd} S) \cup (\operatorname{bd} T)$.
- 5. Fill in the blanks to prove the following.

Theorem. An accumulation point of a set S is either an interior point of S or a boundary point of S.

Proof. Let $x \in S'$; we need to conclude that $x \in \operatorname{int} S \cup \underline{\hspace{1cm}}$. If $x \in \operatorname{int} S$, then we're done. So suppose $x \notin \operatorname{int} S$. We must show that $x \in \underline{\hspace{1cm}}$. By definition of $\underline{\hspace{1cm}}$ point, this means: we must show that any neighborhood $N(x,\varepsilon)$ of x intersects both S and

So let $N(x,\varepsilon)$ be such a neighborhood. Since x is an accumulation point of S we know, by definition of accumulation point, that $N^*(x,\varepsilon)$ intersects ______; since $N^*(x,\varepsilon)\subseteq N(x,\varepsilon)$, we conclude that ______ intersects S as well. So we need only show that $N(x,\varepsilon)$ intersects .

But we're assuming that $x \notin$ ______, so no neighborhood $N(x,\varepsilon)$ can lie completely inside ______, so $N(x,\varepsilon)$ must intersect ______.

So any neighborhood $N(x,\varepsilon)$ of x intersects both _____ and .

Therefore, $x \in S' \Rightarrow x \in \underline{\hspace{1cm}} \cup \underline{\hspace{1cm}}$, and we're done.

6. Using only the definition of limit given on the fact sheet, show carefully that

$$\lim_{n\to\infty}\frac{4n+3}{n+3}=4.$$

7. Using only the definition of limit given on the fact sheet, show carefully that

$$\lim_{n \to \infty} \frac{n^2 - n + 3}{2n^2 - 8} = \frac{1}{2}.$$

8. Using only the definition of limit given on the fact sheet, show carefully that

$$\lim_{n\to\infty} \frac{n^3 - n + 3}{2n^2 - 8} = +\infty.$$

9. Using only the definition of limit given on the fact sheet, show carefully that

$$\lim_{n \to \infty} \frac{n^3 - n + 3}{8 - 2n^2} = -\infty.$$

10. Using any of the limit laws (item D(xiv) from the fact sheet), show *carefully* that

$$\lim_{n \to \infty} \frac{n^2 - n + 3}{2n^2 - 8} = \frac{1}{2}.$$

11. (a) Find the interior, boundary, accumulation points, isolated points, and closure of the set

$$A = [-5, 1) \cup \left\{ 2 + \frac{1}{n} \mid n \in \mathbb{N} \right\}.$$

You don't need to justify your answers.

int
$$A =$$

$$\operatorname{bd} A = \underline{\hspace{1cm}}$$

$$A' = \underline{\hspace{1cm}}$$

$$A \backslash A' = \underline{\hspace{1cm}}$$

$$\operatorname{cl} A = \underline{\hspace{1cm}}$$

(b) Is A open, closed, or neither? Please explain carefully, using definitions and/or theorems from your fact sheet.

- (c) Is A compact? Please explain carefully, using definitions and/or theorems from your fact sheet.
- 12. Repeat the previous exercise for the set $[0,1]\setminus\mathbb{Q}$ of irrational numbers in the interval [0,1].
- 13. Fill in in the blanks.

Theorem. The set \mathbb{N} of natural numbers is not

Proof. To show \mathbb{N} is not compact, we need to find an open cover of \mathbb{N} with no finite subcover. That is, we need to find a collection \mathcal{C} of ______ sets such that \mathbb{N} is contained in the union of the sets in \mathcal{C} , but \mathbb{N} is *not* contained in the union of any finite number of sets in

Let $C = \{I_n : n \in \mathbb{N}\}$, where I_n is the open interval $I_n = (n - \frac{1}{2}, n + \frac{1}{2})$. Then each I_n is open (since I_n is an open interval), and certainly

$$\mathbb{N} \subseteq \cup_{n \in \mathbb{N}} I_n$$

because, if n is a positive integer, then n is in the interval ______ . So $\mathcal C$ is an open _____ of $\mathbb N$.

To show that C has no finite subcover of \mathbb{N} , consider any *finite* set of intervals of the form $(n-\frac{1}{2},n+\frac{1}{2})$. Let's say there are K intervals in this finite set. List them in increasing order: that is, list them as

$$\left(n_1 - \frac{1}{2}, n_1 + \frac{1}{2}\right), \left(n_2 - \frac{1}{2}, n_2 + \frac{1}{2}\right), \left(n_3 - \frac{1}{2}, n_2 + \frac{1}{2}\right), \dots, \left(n_K - \frac{1}{2}, n_K + \frac{1}{2}\right),$$
 (*)

where $n_1 < n_2 < n_3 < \cdots < n_K$. (It's a fact that every finite set of integers can be written in increasing order; proof omitted.) Since the integer $n_K + 1$ is larger than $n_K + \frac{1}{2}$, we see that the integer _____ is not in any of the intervals in (*), and therefore, is not in the union of these intervals.

So we've shown that every finite subcover of the open cover $\mathcal C$ of $\mathbb N$ fails to cover _____ . In other words, we've found an open cover of $\mathbb N$ with no finite _____ . So $\mathbb N$ is not .

14. Consider the real numbers \mathbb{R} , with the usual multiplication, denoted as usual by "·," and with an "addition" operator "@" defined by

$$x @ y =$$
 the mean (average) of x and $y = \frac{x+y}{2}$.

(a) Show that, with these definitions of addition "@" and multiplication "·," the distributive law holds. That is, show that

$$x \cdot (y \odot z) = (x \cdot y) \odot (x \cdot z) \quad \forall x, y, z \in \mathbb{R}.$$

(b) Use an explicit counterexample to show that, with this definition of addition @, the associative law for addition, which is the statement that

$$x@(y@z) = (x@y)@z \quad \forall x, y, z \in \mathbb{R},$$

does not hold.

- 15. Prove that the intersection of any collection of compact sets is compact.
- **16.** Prove that, if $s_n \to +\infty$ and k < 0, then $ks_n \to -\infty$.