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A. The Completeness Axiom.

Recall that, for S C R, the supremum of S, denoted sup S, if it exists, is the least upper bound for S,
and the infemum of S, denoted inf S, if it exists, is the greatest lower bound for S.

The Completeness Axiom states: If a nonempty set S C R is bounded above (respectively, below), then
sup S (respectively, inf S) exists as a real number.

B. The definition of a limit.

(a) Let s € R and let (s;,) be a sequence of real numbers. We say that the sequence (s5) converges
to s, and write

lim s, = s, or lim s, = s, or Sp —> S,
n—oo

if
Ve>0,INeN:n>N =|s, — s/ <e.

(b) A sequence (sy,) is said to diverge to +o00, and we write s,, — +00, provided that

VM eR, ANeN: n>N=s, > M.

(c) A sequence (s,) is said to diverge to —oo, and we write s, — —oo, provided that

VM eR, AN eN: n>N = s, < M.

C. Some definitions concerning the topology of R.

(i) A neighborhood of a point = € R is a set N(x,¢) = (v — €,z + €), for some € > 0.

(iii) A deleted neighborhood of a point x € R is a set N*(x,e) = (r — e,2) U (xz,z + ¢), for some
e > 0.

(iv) An interior point of set S C R is a point € R such that, for some ¢ > 0, N(z,e) C S. The set
of all interior points of S is denoted int S.

(v) A boundary point of set S C R is a point € R such that, for all € > 0, N(z,e) NS # () and
N(xz,e) NR\S # (. The set of all boundary points of S is denoted bd S.

(vi) Aset SC Ris closed if bdS C S. A set S CR isopenif bdS CR\S.

(vii) An accumulation point of set S C R is a point « € R such that, for every e > 0, N*(x,e)NS # 0.
The set of all accumulation points of S is denoted S’.

(viii) An isolated point of a set S C R is a point # € R such that z € S but = ¢ S’. The set of all
isolated points of S is simply the set S\S’.

(ix) A set S C R is called compact if every open cover of S (that is, every collection {T,: o € A} of
open sets T, whose union contains S) has a finite subcover (meaning there exists a collection of finitely
many of the T,’s such that the union of these finitely many 7;,’s contains S).

(x) The closure clS of a set S C R is defined by c1.S =S U S".
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D. Some theorems that you may use without proof (but you must cite the appropriate
theorem at any point where it is needed).

(i) Theorem 3.1.2: The Principle of Mathematical Induction. Let A(n) be a statement regarding
a natural number n. Suppose that (a) A(1) is true, and (b) A(k) implies A(k + 1), for all k¥ € N. Then
A(n) is true for all integers n.

(ii) Theorem 3.2.10(d) and Exercise 3.2.6(a): The Triangle Inequality on R. Let z,y € R.
Then: (a) |2+ ] < J2] + [yl (b) ||| — Iyl | < |2 — o],

(iii) Theorem 3.3.9: The Archimedean Property of R. The set N of natural numbers is unbounded
above in R.

(iv) Theorem 3.3.10: Each of the following is equivalent to the Archimedean Property. (a) For each
z € R, there exists an n € N such that n > z. (b) For each x > 0 and for each y € R, there exists an
n € N such that nz > y. (c) For each z > 0, there exists an n € N such that 0 < 1/n < z.

(v) Theorem 3.3.13: The Density of Q in R. If x and y are real numbers with x < y, then there
exists a rational number r with z <y <.

(vi) Theorem 3.4.7. Let S be a subset of R. (a) S is open iff S = intS. (b) S is closed iff its
complement R\S' is open.

(vii) Theorem 3.4.10 and Corollary 3.4.11. (a) The union of any collection of open sets is open.
(b) The intersection of any finite collection of open sets is open. (c) The intersection of any collection
of closed sets is closed. (d) The union of any finite collection of closed sets is closed.

(viii) Theorem 3.4.17. Let S be a subset of R. (a) S is closed iff " C S. (b) clS is closed. (¢) S is
closed iff S =clS. (d) c1S=S5UbdS.

(ix) Theorem 3.5.5 (Heine-Borel). A subset S of R is compact iff S is closed and bounded.
(x) Theorem 3.5.6 (Bolzano-Weierstrass). If S C R is bounded and contains infinitely many points,

then there is at least one point in R such that € S’ (that is, such that x is an accumulation point of

s).

(xi) Theorem 4.1.9. Let (s,) and (ay) be sequences of real numbers and let s € R. If for some k& > 0
and some m € N we have |s — s,| < kla,| for all n > m, and if a,, — 0, then it follows that s, — s.

(xii) Theorem 4.1.15. Every convergent sequence is bounded.
(xiii) Theorem 4.1.16. If a sequence converges, its limit is unique.

(xiv) Theorem 4.2.1. Suppose (s,) and (t,) are convergent sequences with s,, — s and ¢, — ¢. Then
(a) sp+tn, —>s+t. (b) k+s, = k+sand ks, — ks for any k € R. (c) spt, — st. (d) If t #0 and
t, # 0 for any n € N, then s, /t, — s/t.

(xv) Theorem 4.2.4. Suppose (s,) and (t,) are convergent sequences with s, — s and ¢, — ¢. If
sp < t, for allm € N, then s <.

(xvi) Corollary 4.2.5. If t,, — t and ¢, > 0 for all n € N, then ¢ > 0.

(xvi) Theorem 4.2.7. Suppose that (s,) is a sequence of positive terms and that the sequence of ratios
(Sn+1/8n) converges to L. If L < 1, then s, — 0.

(xvi) Theorem 4.2.12. Suppose (sy,) and (t,) are sequences such that s,, <t,Vn € N. (a) If s, - 400
then ¢, — +oo. (b) If ¢,, & —oo then s, — —o0.

(xvii) Theorem 4.2.13. (s,) be a sequence of positive numbers. Then s,, — oo iff 1/s,, — 0.
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E. Quantifiers.

1. The quantifier “v” means “for all,” or “for each,” or “for every.”
If X is a set and Q(x) is a statement about a quantity z, then the statement
Ve e X : Q(z)
means the statement Q(x) is true for every z in X.

2. The quantifier “d4” means “for some,” or “for at least one,” or “there exists.”

If X is a set and Q(x) is a statement about a quantity =, then the statement
dr e X :Q(x)

means the statement @Q(x) is true for some (at least one, possibly more) x in X.

F. Proof templates.

(a) P = @, direct proof.

Theorem. P = Q.
Proof. Assume P. [Now do what you need to conclude:] Therefore, Q.
SoP=@Q. O

(b) P = @, contrapositive proof.

Theorem. P = Q).
Proof. Assume ~ Q. [Now do what you need to conclude:] Therefore, ~ P.
SoP=Q. O

(c) P& Q.

Theorem. P < Q.

Proof. Assume P. [Now do what you need to conclude:] Therefore, Q.
So P = Q.

Next, assume (. [Now do what you need to conclude:] Therefore, P.
So Q= P.

Therefore, P < Q. 0O

(d) Proofs with universal quantifiers.

Theorem. Vz € X, Q(x).
Proof. Assume x € X. [Now do what you need to conclude:] Therefore, Q(z).
SoVr e X, Q(z). O
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(e) Proofs with existential quantifiers.

Theorem. Jz € X, Q(x).

Proof. [Find a particular z € X, call it x, that has the property Q(x). Then write:] Let
x = xo. Then ... [show that Q(xp) is true]. So Iz € X, Q(x). O

(f) Proof by contradiction.

Theorem. T.

Proof. Assume ~ T. [Then do what’s necessary to derive a contradiction, and write:]
Contradiction. Therefore 7" is true. [J

(g) Proof by the principle of mathematical induction.

Theorem. Vn € N, A(n).

Proof. Step 1: Is A(1) true? [Now do what you need to conclude:] So A(1) is true.

Step 2: Assume A(k). [Now do what you need to conclude:] So A(k + 1) follows. So
A(k) = Ak +1).

Therefore, by the principle of mathematical induction, A(n) is true Vn € N. [

G. Some special sets.

a) Z = {integers} ={...,—2,—-1,0,1,2,...}.
) N = {natural numbers} = {1,2,3,...}.

¢) R = {real numbers} = (—o0, c0).

d) Q = {rational numbers} = {fractions m/n : m,n € Z and n # 0}.

H. Facts about integers.

(a) Let a,be Z. We say a divides b, written a|b, if b = na for some n € Z.

(b) (Division algorithm.) Given integers a and b with b > 0, there exist unique integers ¢ and r for
which a =gb+r and 0 <7 < b.



