
MATH 3001–001: Analysis I SOLUTIONS Fall 2025

EXAM 1: SOME PRACTICE PROBLEMS

1. Prove the following.

Proposition.

(a) If a,m ∈ Z and m|a, then m|(an) for any n ∈ Z.

(b) If a, b,m ∈ Z, m|a, and m|b, then m|(a+ b) and m|(a− b).

(Use the definition of “|” from your fact sheet.)

2. Prove the following.

Proposition. If a, b, c, d,m ∈ Z, m|(a− b), and m|(c−d), then m|
(
a+ c− (b+d)

)
. (Use

the definition of “|” from your fact sheet.)

3. Prove the following.

Proposition. If a, b ∈ Z, a is odd, and b is even, then ab is even. (Use the definitions
of even and odd integers: an even integer is one of the form 2k for some k ∈ Z; an odd
integer is one of the form 2k + 1 for some k ∈ Z.)

4. Use proof by contrapositive to prove the following.

Proposition. If n2 is odd, then n is odd. (Use the definitions of even and odd integers:
an even integer is one of the form 2k for some k ∈ Z; an odd integer is one of the form
2k + 1 for some k ∈ Z.)

5. Use proof by contrapositive to prove the following.

Proposition. Let a, b ∈ Z. If ab is a multiple of 3, then either a or b is a multiple of
3. (Hint: an integer that is not a multiple of 3 is of the form 3k + r where k ∈ Z and r
equals either 1 or 2.)

6. Prove that, if m ∈ Z is even, then 4|m2, and if m is odd, then 4|(m2 − 1).

7. Prove by contradiction that, if a, b ∈ Z are odd, then there does not exist c ∈ Z with
a2 + b2 = c2. Hint: assume a, b ∈ Z are odd and that there does exist such an integer c.
Show that 4|(c2−2). Use this together with the previous exercise to derive a contradiction.

8. Identify each of the following statements as true or false (circle “T” or “F”). Please
explain your answers: If a statement is true, explain why (you don’t need to provide
a complete proof; just a sentence or two will do). If a statement is false, provide a
counterexample to the statement, and explain why it’s a counterexample.

(a) ∀m ∈ Z, ∀n ∈ Z, ∃k ∈ Z : (m− n)|k. T F

(b) ∃k ∈ Z : ∀m ∈ Z, ∀n ∈ Z, (m− n)|k. T F

(c) ∼
(
∀m ∈ Z, ∃k ∈ Z : ∀n ∈ Z, (m− n)|k

)
. T F
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9. Let Fn be the nth Fibonacci number, defined by

F1 = F2 = 1, Fn+2 = Fn+1 + Fn (n ≥ 1).

Use mathematical induction to prove that

F1 + F2 + F3 + F4 + · · ·+ Fn = Fn+2 − 1.

10. Use the principle of mathematical induction to prove that, for any n ∈ N,

1 · 1! + 2 · 2! + 3 · 3! + · · ·+ n · n! = (n+ 1)!− 1.

(Hint: (k + 2)(k + 1)! = (k + 2)!.) Please clearly identify your base step, induction
hypothesis, inductive step, and the conclusion of your proof.

11. Use the principle of mathematical induction to prove that, for any n ∈ N,

1 · 3 + 2 · 4 + 3 · 5 + 4 · 6 + · · ·+ n(n+ 2) =
n(n+ 1)(2n+ 7)

6
.

12. Prove that, given any natural number n ∈ N with n ≥ 8, there exist integers a, b ∈
Z≥0 = {0, 1, 2, 3, . . . , } such that

3a+ 5b = n.

(In other words, prove that any postage amount of 8 cents or more can be made from 3
cent and 5 cent stamps only.) Use the following version of strong induction: Let A(n) be
the given statement.

• Prove that A(8), A(9), and A(10) are true.

• Prove that A(k)⇒ A(k + 3) for k ≥ 8.

Explain (at least intuitively) why this is enough.

13. Identify each of the following statements as true or false, by putting a “T” or “F” in
the space to the left of the statement. Then, in the space to the right of the statement,
put the number of the statement that is the negation of the statement in question. For
example, if the negation of statement 2 is statement 7, then put a “7” in the space to the
right of statement 2.

One of the statements has no negation present, so leave the space to the right of that
statement blank.

(Recall that R+ denotes the set of positive real numbers.)
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1. F ∀w ∈ R+,∀x ∈ R,∀y ∈ R,∀z ∈ R+, w + z ≤ x− y 3

2. F ∃w ∈ R+,∃x ∈ R,∀y ∈ R,∀z ∈ R+, w + z ≤ x− y 7

3. T ∃w ∈ R+,∃x ∈ R,∃y ∈ R,∃z ∈ R+, x < w + y + z 1

4. T ∼(∼(∀w ∈ R+,∃x ∈ R,∀y ∈ R,∃z ∈ R+, x− y < w + z)) 5

5. F ∃w ∈ R+,∀x ∈ R,∃y ∈ R,∀z ∈ R+, w + z ≤ x− y 4

6. F ∀w ∈ R+,∃x ∈ R,∀y ∈ R,∃z ∈ R+, w + z ≤ x− y

7. T ∀w ∈ R+,∀x ∈ R,∼(∀y ∈ R,∀z ∈ R+, w + z ≤ x− y) 2

8. F ∼(∀w ∈ R+,∀x ∈ R,∼(∀y ∈ R,∀z ∈ R+, x− y < w + z)) 9

9. T ∀w ∈ R+,∀x ∈ R,∃y ∈ R,∃z ∈ R+, w + z ≤ x− y 8

14. Let f(x) = 3x− 7.

(a) Prove that, ∀ε > 0, ∃δ > 0 such that

|x− 4| < δ ⇒ |f(x)− 5| < ε.

(b) Restate what you just proved in terms of a limit of f(x).

Therefore, ∀ε > 0, ∃δ > 0 such that

|x− 4| < δ ⇒ |f(x)− 5| < ε. �

(b)
lim
x→4

f(x) = 5.

15. Let g(x) = x2 − 1.

(a) Prove that, ∀ε > 0, ∃δ > 0 such that

|x− 1| < δ ⇒ |g(x)| < ε.

Hint: let δ = min{ε/3, 1} (the minimum of ε/3 and 1).

(b) Restate what you just proved in terms of a limit of g(x).

16. (a) Explain, intuitively, why the negation of the statement P ⇒ Q is the statement
P∧ ∼ Q (meaning “P and not Q”).
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(b) Negate the statement

∀ε > 0, ∃δ > 0 � |x− a| < δ ⇒ |f(x)− L| < ε.

17. Prove that 52n − 1 is a multiple of 8 for all n ∈ N.

18. What’s wrong with the following proof?

Theorem. All sneakers are identical.

Proof. Let A(n) be the statement that all sneakers in any set of n sneakers are identical.

Is A(1) true? Yes, any one sneaker is identical to itself.

Now assume A(k): any k sneakers are identical to each other. To deduce A(k+1), line all
k+1 sneakers up in a row. The first k sneakers in that row are identical, by the induction
hypothesis. So are the last k, by the induction hypothesis. But the second sneaker in the
row belongs to both the first k and the last k, so all sneakers are identical to the second
one.

First k Last k

So A(k + 1) follows. So A(k)⇒ A(k + 1). So by induction, A(n) is true for all n ∈ N.

In particular, let n be the total number of sneakers in existence. Then all of these are
identical. �


