Compact sets (Sec. 3.5).

Definition 3.5.1.

We say $5 \le IR$ is compact if, for every collection $\{T_x : \alpha \in A\}$ of open sets $T_x \le IR$ (A can be any indexing set) such that

there is a finite set B=A such that

In this context, we call & Tx: x EA & an open cover of 5, and & Tx: x EB & a finite subcover.

So, "S is compact" means: every open cover of S has a finite subcover.

Examples.
(i) (0,1) is not compact. Acof: We have

$$(0,1)=\overset{\infty}{\cup}(\frac{1}{2}n+1).$$

But consider any collection

where B is a finite set of positive integers. Let m = max B. Then

But $(0,1) \notin (m,1)$. So the open cover $\{(m,1): n \in N\}$ of (0,1) has no finite subcover. So (0,1) is not compact.

Every finite subset of IN has a maximum. (Why?)

(ic) [0,1] is compact. Proof: it follows from

Thm. 3.5.5 (Heine-Borel Theorem.) $S \subseteq IR$ is compact iff S is closed and bounded.

Proof that compact => closed and bounded (for the converse, see text).

Assume S = IR is compact. Since the collection {(-n, n): n = /N} covers IR, it also covers

S. Since S is compact, some subcollection

{ (-n,n): n e B},

where B is finite, covers S. Let m = max B.

Then (-n,n) = (-m,m) \ \ n \in \ B, so

 $S \subseteq \bigcup_{n \in B} (-n, n) = (-m, m).$

So S is bounded below by - m and above by m.

To show 5 is closed, it suffices to show that $bd5 \le 5$. Suppose not: then $\exists x \in bd5$ with $x \notin 5$.

Note that $\{x\} = \int_{n=1}^{\infty} V_n$, where $V_n = [x - \frac{1}{n}, x + \frac{1}{n}]$.

Define Un = IRIVn: since each Vn is closed, each Un is open. Also, since X \$5, we have

 $5 \subseteq IR \setminus \{x\} = IR \setminus (\bigcap_{n=1}^{\infty} V_n) = \bigcup_{n=1}^{\infty} (IR \setminus V_n)$

 $= \bigcup_{N=1}^{\infty} U_N$.

So { Un: n ∈ M} is an open cover of S: since S is compact, I a finite subset B of M with

S = NEB Un.

But then, taking complements,

 $|R \setminus S \ge \bigcap_{n \in B} (|R \setminus U_n) = \bigcap_{n \in B} V_n$ $= \bigcap_{n \in B} [x - n, x + n].$

The intersection on the right equals [x-/m, x+/m], where m = max B.

But $N(x, 1/m) \subseteq [x-1/m, x+1/m]$. So N(x, 1/m) lies outside of S, contradicting the fact that $x \in 6dS$.

So bd S = 5, so S is closed.

口

A consequence:
Theorem 3.5.6.
(Bolzano-Weierstrass). $S \leq (R)$ has infinitely many elements => either S is unbounded, or S has at least one accumulation point in R .
wanted to the and a Sie when the Dan S
many elements = / either 3 is unbounded, or 3
has at least one accumulation point in 11.
Acof omitted.