Completeness, continued.

Recall: IR is complete (if SSIR is nonempty and bounded above, resp. below,
then sup 5, resp. inf 5, exists) =>
IR has the Archimedean property (NSIR
is not bounded above) => Thm. 3.3.10
(various properties of ">" on IR) =>
B is dense in IR (Yx,y EIR with X<Y,
I of B: X<O<V). 3 g & Q : x < g < y).

What about irrational numbers?

tirst of all, they exist:

Theorem 3.3.12.

If $p \in \mathbb{N}$ is prime, then $\exists x \in \mathbb{R}$: x > 0 and x = p. (Remark: we write $x = \sqrt{p}$.)

Sketch of proof. (DIY: fill in the details.)

Let $S = \{ r \in \mathbb{R} : r > 0 \text{ and } r^3 . Then <math>S$ is nonempty (1 \in 5) and bounded above (by p), so by completeness, $x = \sup S$ exists.

Claim: $x^2 = p$.

To prove this, we prove $x^2 = p$ and $x^2 > p$ are false. Then by the trichotomy law

(Axiom O1, p. 114), it follows that $x^2 = p$.

We prove x p is false by contradiction:

 $\frac{1}{h} < \frac{p-x^2}{2x+1}$.

Now do some algebra to conclude that $(x+1/n)^2 < p$, contradicting the assumption $x = \sup 5$. So $x^2 < p$ is false.

Similarly, we show that $x^2 > p$ is false. So $x^2 = p$. So \sqrt{p} exists. \square

Next, we show:

Thm. 3.3.1.

If $p \in W$ is prime, then $\sqrt{p} \notin Q$.

Proof (by contradiction).

Let $p \in N$ be prime; assume $\sqrt{p} = Nn$ where $m, n \in N$ and m, n are coprime (their only common factor in N is 1). Squaring both sides gives $p = \frac{m^2}{n^2}$, or

 $n^2p=m^2. \tag{*}$

So plm? But ma and m have the same primes as factors, so plm. Say m = pk, where $k \in \mathbb{Z}$. Then (x) gives $n^2p = p^2k^2$! divide by p to get $n^2 = pk^2$, so pln^2 , so pln.

So plu and pln, contradicting the fact that m, n are coprime. So Vp & Q. I

Finally, we have:

Theorem 3.3.15.

The irrationals are dense in 1R: green $x,y \in IR$ with x < y, \exists an irrational $w \in IR$ with

x< w<y.

Assume $x,y \in \mathbb{R}$ with x < y. By Thm. 3.3.13, $\exists q \in \mathbb{Q}$:

*/va < q < 1/va.

Multiply by Va:

x < \2 q < y.

One shows that, since q is rational, vaq is not, and we're done.

Proposition. Let S and T be nonempty subsets of \mathbb{R} . Suppose $\sigma \leq \tau$ for all $\sigma \in S, \tau \in T$. Then $\sup S \leq \inf T$.

Proof. Given nonempty sets $S, T \subseteq R$, suppose $\sigma \leq \tau$ for all $\sigma \in S, \tau \in T$.

We note first that, since $\sigma \leq \tau \ \forall \sigma \in S, \tau \in T$, we see that S is bounded above, by any element of T. Moreover, since $\tau \geq \sigma \ \forall \tau \in T, \sigma \in S$, we see that T is bounded below, by any element of S. So sup S and inf T exist.

Now let $\varepsilon > 0$. Since inf T is the *greatest* lower bound for T, and since inf $T + \varepsilon$ is greater than inf T, we see that inf $T + \varepsilon$ is *not* a lower bound for T. So there exists some $\tau \in T$ with

$$\tau < \inf T + \varepsilon. \tag{*}$$

Further, by assumption, we have $\tau \geq \sigma$ for every $\sigma \in S$, so τ is an upper bound for S, and is therefore greater than or equal to the least upper bound for S—that is,

$$\tau \ge \sup S. \tag{**}$$

Combining (*) with (**) gives

$$\sup S \le \tau < \inf T + \varepsilon,$$

for arbitrary $\varepsilon > 0$. But if $\sup S < \inf T + \varepsilon$ for all $\varepsilon > 0$, then $\sup S \le \inf T$, (see Theorem 3.2.8 in the text), and we're done.