The real numbers and completeness. (Sec. 3.3.)

The real numbers IR are the unique complete ordered field." This means IR satisfies:

- (i) various field axioms describing behavior of $+, -, \times, \div$ (text, p. 113),
- (ii) various order axioms describing behavior of <, >, <, >> (text, p 114),
- liii) the completeness axiom, to be explained below.

- Definition 1. Let $S \subseteq IR$.

 (a) If $\exists m \in IR$ with $m \ge 5$ $\forall s \in S$, we call m an upper bound for S, and say S is bounded above.
- (b) Define lower bound and bounded below by replacing m35 with m = 5 in (a).
 - (c) If an upper bound m of 5 belongs to 5, we call m the maximum of 5, written m = max 5.
 - (d) The minimum of 5, written min 5, is defined analogously.

Example 1. Let

S= (0,1], T= 23-n: n∈ IN3, U=Ø, V=IR.

Then:

· 2, - II, - 1040, 0 are lower bounds for 5.

· 5 has no winmum

• 1= max S

· Thas no maximum

· 2= min T

· 3,7,10 to 43 are upper bounds for T.
· U is bounded above/below by any mEIR. max U and min U are undefined.

· V is not bounded above or below.

Definition 2. Let $S \subseteq IR$ be nonempty.

(a) If S is bounded above and m

is the smallest upper bound for S, we write $m = \sup S$ (the supremum of S)

(b) Similarly, the inferior inf 5, if it exists, is the largest lower bound for 5.

Example 2. For 5, T, U, V as in Example 1,

inf S=0, sup S= max S=1,
inf T= min T= 2, sup T= 3,
inf V and sup V are undefined.

We can now state!

The Completeness Axiom for IR. Every nonempty $S \subseteq IR$ that has a (finite) upper bound has a (finite) least upper bound.

A consequence:	
A consequence: Theorem (the Archimedean property of IR): The subset IN of IR is unbounded above (i.e. IN has no upper bound).	
The subset IN of IR is unbounded above lie.	
IN has no upper bound).	
Proof (by contradiction).	
Assume IN is bounded above. Then by the	
Assume IN is bounded above. Then by the completeness axiom, $\exists x \in IR$ such that $x = \sup IN$. Since x is the <u>least</u> upper bound, $x - I$ is not an	
Since x is the least upper bound, x-1 is not an	
upper bound. So InEIN: n=x-1. But then	
upper bound. So $\exists n \in \mathbb{N}$: $n > x - 1$. But then $x < n + 1$, so and since $n + 1 \in \mathbb{N}$, x is not an	
upper bound for IN. Contradiction I to the claim	
upper bound for IN. Contradiction Ito the claim that x = sup IN). So IN is not bounded above.	