Wednesday, 9/3 - 1
The Principle of Mathematical Induction.
(A proof template for statements of the form Yne IN: A(n).)
$\forall n \in N: A(n).$
I dea: let A(n) be a statement about a natural number n.
Example: $1+2+3++n=\frac{h(n+1)}{2}$
$1+^{n}2+3++n=h(n+1)$
Suppose we can show that:
(1) A(1) is true, and
(d) Whenever A(k) is true for k∈/N,
A(k+1) follows. In other words, $\forall k \in IN$, $A(k) => A(k+1)$.
Then by (11, A11) holds, so by (2), $A(2)$ holds, so by (2), $A(4)$ holds so "ultimately," $A(n)$ holds for any $n \in \mathbb{N}$.
So we have a "mathematical induction" proof template:
Theorem. $\forall n \in \mathbb{N}, A(n).$ Proof Step 1: Is $A(1)$ +roe? [Prove $A(1)$.]
Step 1: Is A(1) true? [Prove A(11.]

So A(1) is true.

Step 2: Assume A(k). [Now do what's

```
necesary to conclude: ] So A(k+1) follows.
  So by the principle of mathematical induction, A(n) is tree Yn E/No
     Step 1 is the "base step."

Assuming A(k) is the "induction hypothesis."

Deducing A(k+1) is the "inductive step."
                                                           Step2
Example 1
Prove that, \forall n \in IN, 1+2+3+...+n = \frac{n(n+1)}{2}.
             A(n) be the statement
 Step 1: 15 A(1) true?
    So A(1) is true.
 Step 2: Assume
               A(k): 1+2+3+...+ k= k(k+1).
    To deduce A(k+1), we note that
 1+2+3+... + k+1'='(1+2+3+...+ k)+ k+1
```