Quantifiers.
A) Basics. Wednesday, 8/27-1 for each." quantifier) means "for all" or I (existential quantifier) means "there exists" or "for some." Also, we use 7, or i, to mean "such that." Examples: or n=2k+1 for some $k\in\mathbb{Z}$ (if n is even) or n=2k+1 for some $k\in\mathbb{Z}$ (if n is odd). 2) $\exists x \in IR \ni x \notin Q$. That is, there is a (at least one) real number that is irrational. We can: (a) Combine quantifiers.
For example, we can write: (i) $\forall x \in \mathbb{R}$, $\exists y \in \mathbb{R}$: x>y (which is true:

take y=x-1);
(ii) $\exists y \in \mathbb{R}$: $\forall x \in \mathbb{R}$, x>y (which is false:

no real number y is < all real numbers x). [Note: We interpret (i) as meaning a different y can work for each x. In (ii), the same y must work for all x.] (b) Alegate statements with quantifiers.

Let X be a set, and QIXI a statement about an object X Then:

(i)
$$\sim (\forall x \in X, Q(x))$$
 is equivalent to $\exists x \in X \ni \sim Q(x)$.

(B) Proofs.

(1) To prove
$$\exists x \in X \ni Q(x)$$
, only one (explicit or implicit) example is required.

(2) Proving
$$\forall x \in X$$
, $Q(x)$ is the same as proving $x \in X \Rightarrow Q(x)$ (so its really a $P \Rightarrow Q$ proof).

Examples!

Proposition 1. $\exists q \in \emptyset \ni |q - \sqrt{a}| < .01.$ Proof

We have √2 = 1.4142...

Let q = 1.41. Then $q - \sqrt{2} = -0.0042...$, so $|q - \sqrt{2}| = 0.0042... < 0.01$.

So there is a rational number within 0.01 of $\sqrt{2}$.

Proposition 2.

Jp € }prime numbers } > p>10 10,000,000,000

I infinitely many primes: denote them by pi, pz, pz, ... (in ascending order). Each is larger than the previous one (since they're integers), so