1. Quantifiers.

(a) The quantifier " \forall " means "for all," or "for each," or "for every." If X is a set and Q(x) is a statement about a quantity x, then the statement

$$\forall x \in X : Q(x)$$

means the statement Q(x) is true for every x in X.

(b) The quantifier " \exists " means "for some," or "for at least one," or "there exists." If X is a set and Q(x) is a statement about a quantity x, then the statement

$$\exists x \in X : Q(x)$$

means the statement Q(x) is true some (at least one, possibly more) x in X.

2. Proof templates.

(a) $P \Rightarrow Q$, direct proof.

Theorem. $P \Rightarrow Q$.

Proof. Assume P. [Now do what you need to conclude:] Therefore, Q.

So $P \Rightarrow Q$. \square

(b) $P \Rightarrow Q$, contrapositive proof.

Theorem. $P \Rightarrow Q$.

Proof. Assume $\sim Q$. [Now do what you need to conclude:] Therefore, $\sim P$. So $P \Rightarrow Q$. \square

(c) $P \Leftrightarrow Q$.

Theorem. $P \Leftrightarrow Q$.

Proof. Assume P. [Now do what you need to conclude:] Therefore, Q.

So $P \Rightarrow Q$.

Next, assume Q. [Now do what you need to conclude:] Therefore, P.

So $Q \Rightarrow P$.

Therefore, $P \Leftrightarrow Q$. \square

(d) Proofs with universal quantifiers.

Theorem. $\forall x \in X, Q(x)$.

Proof. Assume $x \in X$. [Now do what you need to conclude:] Therefore, Q(x). So $\forall x \in X$, Q(x). \square

(e) Proofs with existential quantifiers.

Theorem. $\exists x \in X, Q(x).$

Proof. [Find a particular $x \in X$, call it x_0 , that has the property Q(x). Then write:] Let $x = x_0$. Then ... [show that $Q(x_0)$ is true]. So $\exists x \in X$, Q(x). \square

(f) Proof by the principle of mathematical induction.

Theorem. $\forall n \in \mathbb{N}, A(n).$

Proof. Step 1: Is A(1) true? [Now do what you need to conclude:] So A(1) is true.

Step 2: Assume A(k). [Now do what you need to conclude:] So A(k+1) follows. So $A(k) \Rightarrow A(k+1)$.

Therefore, by the principle of mathematical induction, A(n) is true $\forall n \in \mathbb{N}$.

3. Some special sets.

- (a) $\mathbb{Z} = \{\text{integers}\} = \{\dots, -2, -1, 0, 1, 2, \dots\}.$
- (b) $\mathbb{N} = \{\text{natural numbers}\} = \{1, 2, 3, \ldots\}.$
- (c) $\mathbb{R} = \{\text{real numbers}\} = (-\infty, \infty).$
- (d) $\mathbb{Q} = \{ \text{rational numbers} \} = \{ \text{fractions } m/n : m, n \in \mathbb{Z} \text{ and } n \neq 0 \}.$

4. Facts about integers.

- (a) Let $a, b \in \mathbb{Z}$. We say a divides b, written a|b, if b = na for some $n \in \mathbb{Z}$.
- (b) (Division algorithm.) Given integers a and b with b > 0, there exist unique integers q and r for which a = qb + r and $0 \le r < b$.