Limit proof activity: SOLUTIONS

1. Fill in the blanks to complete the following proof.

Proposition. Let

$$f(x) = \frac{1}{2}x - 2.$$

Then $\forall \varepsilon > 0, \ \exists \delta > 0 \text{ such that}$

$$|x-8| < \delta \Rightarrow |f(x)-2| < \varepsilon$$
.

Proof. Let $\varepsilon > \underline{0}$.

[Scratchwork: Ultimately, we want to assure that $|f(x)-2|<\underline{\varepsilon}$. But

$$|f(x) - 2| = \left|\frac{1}{2}x - 2 - 2\right| = \left|\frac{1}{2}x - 4\right| = \frac{1}{2}\left|x - \underline{}\right|,$$

so we want $\frac{1}{2}|x-8|<\varepsilon$, meaning $|x-8|<\underline{2\varepsilon}$. So $\delta=\underline{2\varepsilon}$ works. Then this is what we write.]

Let $\delta = \underline{2\varepsilon}$. Then

$$|x - 8| < \delta \Rightarrow |f(x) - 2| = \left| \frac{1}{2}x - 2 \right| = \left| \frac{1}{2}x - 4 \right| = \frac{1}{2}|x - 8| < \frac{1}{2} \cdot \underline{2\varepsilon} = \varepsilon.$$

So $\forall \varepsilon > 0, \exists \delta > 0$ such that

$$|x-8| < \delta$$
 \Rightarrow $|f(x)-2| < \varepsilon$.

2. Fill in the blanks.

So: no matter how close we want f(x) to be to $\underline{}$, we can achieve that, if we choose x close enough to $\underline{}$. Or another words: x being close to $\underline{}$ guarantees that f(x) is close to $\underline{}$. So what we've just proved is that

$$\lim_{x \to \underbrace{8}} f(x) = \underbrace{2}.$$