
MATH 3000–001: Analysis I HW Assignment 4: Solutions to Selected Exercises

Assignment:

Section 3.4, pages 140-143: Exercises 1acdgi, 2abefh, 7adeg, 9a, 10, 14.

Section 3.5, pages 148-151: 1, 2, 3c, 4, 8b.

Section 3.4:

1. Let S ⊂ R. Mark each statement as True or False. Justify each answer.

(a) intS ∩ bdS = ∅. Solution: True. If x ∈ intS, then some neighborhood N(x, ε)
of x is contained completely in S. But then x can’t be in bdS, because every
neighborhood of a boundary point of S intersects R\S.

(c) bdS ⊆ S. Solution: False. For example, if S = (0, 1), then 0 ∈ bdS but 0 6∈ S.

(d) S is open iff S = intS. Solution: True. This is Theorem 3.4.7(a).

(g) Every neighborhood is an open set. Solution: True. By Definition 3.4.1, a neigh-
borhood of x is a set of the form (x− ε, x + ε), which is an open interval, and thus
an open set.

(i) The union of any collection of closed sets is closed. Solution: False. For example,
the union of the collection {[ 1

n
, 1− 1

n
] : n ∈ N} of closed intervals equals (0, 1), which

is not closed.

7. Let S and T be subsets of R. Find a counterexample for each of the following.

(a) If P is the set of all isolated points of S, then P is a closed set. Solution: A
counterexample is the set S = {1 + 1

n
: n ∈ N}. Note that every point in S is an

isolated point of S, so the set of isolated points of S is S. But S is not closed,
because it does not contain the point 1, which is a boundary point of S.

(d) If S is open, then int(clS)) = S. Solution: A counterexample is the set S =
(0, 1) ∪ (1, 2). We have clS = [0, 2], so int(clS)) = int[0, 2] = (0, 2) 6= S.

(e) bd(clS) = bdS. Solution: A counterexample is the set S = [0, 1)∪ (1, 2]. We have
clS = [0, 2], so bd(clS) = {0, 2}, while bdS = {0, 1, 2}.

(g) bd(S ∪ T ) = (bdS) ∪ (bdT ). Solution: A counterexample is given by the sets
S = [0, 1] and T = [1, 2]. We have bd(S ∪ T ) = bd[0, 2] = {0, 2}, while (bdS) ∪
(bdT ) = {0, 1} ∪ {1, 2} = {0, 1, 2}.
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9. Prove the following. (a) An accumulation point of a set S is either an interior point
of S or a boundary point of S.

Solution: Let x be an accumulation point of a set S. If x ∈ intS, then we’re done. If
not, then we must show that x ∈ bdS. By definition of boundary point, this means: we
must show that any neighborhood N(x, ε) of x intersects both S and R\S.

So let N(x, ε) be such a neighborhood. Since x is an accumulation point of S we know, by
definition of accumulation point, that N∗(x, ε) intersects S; since N∗(x, ε) ⊆ N(x, ε), we
conclude that N(x, ε) intersects S as well. So we need only show that N(x, ε) intersects
R\S.

But we’re assuming that x 6∈ intS, so no neighborhood N(x, ε) of S can lie completely
inside S, so N(x, ε) must intersect R\S, and we’re done.

Section 3.5:

2. Mark each statement as True or False. Justify each answer.

(a) Some unbounded sets are compact. Solution: False. By the Heine-Borel Theorem,
compact ⇒ bounded, so by the contrapositive, not bounded ⇒ not compact.

(b) If S is a compact subset of R, then there is at least one point in R that is an
accumulation point of S. Solution: False. The set S = {3} is compact, but has no
accumulation points in R.

(c) If S compact and x is an accumulation point of S, then x ∈ S. Solution: True. If S
is compact, then it’s closed, by the Heine-Borel Theorem. But a closed set contains
all of its accumulation points, by Theorem 3.4.17(a).

(d) If S is unbounded, then S has at least one accumulation point. Solution: False.
The set N is unbounded, but has no accumulation points.

(e) Let F = {Ai : i ∈ N} and suppose that the intersection of any finite subfamily of F
is nonempty. If ∩F = ∅, then for some k ∈ N, Ak is not compact. Solution: True.
Theorem 3.5.7 tells us the following: Let F = {Ai : i ∈ N} and suppose that the
intersection of any finite subfamily of F is nonempty. If each Ai is compact, then
the intersection of the Ai’s is nonempty. The contrapositive of this last statement is:
If ∩F = ∅, then for some k ∈ N, Ak is not compact.

3. Show that each subset of R is not compact by describing an open cover for it that has
no finite subcover. (c) N Solution: An open cover of N is C = {(n − 1

4
, n + 1

4
) : n ∈ N}

(clearly N is contained in the union of these sets, and clearly each of the intervals in the
collection is open). To prove that this open cover has no finite subcover, let B be a finite
collection of the intervals (n− 1

4
, n+ 1

4
). Let n0 be the largest of the integers n appearing;

that is, n0 = max{n : (n− 1
4
, n + 1

4
) ∈ B}. Note that n0 + 1 is not in any of the intervals
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making up B, since clearly, an upper bound for the union of the intervals in B is n0 + 1
4
.

So N is not contained in B, so we have found an open cover C of N that has no finite
subcover.

4. Prove that the intersection of any collection of compact sets is compact. Solution:
Let C be a collection of compact sets. By definition of intersection,

∩C∈CC ⊆ B,

where B is any one of the sets in C. By assumption, B is bounded, and clearly any subset
of a bounded set is bounded. (This follows, for example, from Exercise 8, Section 3.3.)
So ∩C∈CC is bounded.

Moreover, each element of C is closed, and therefore so is ∩C∈CC, by Corollary 3.4.11(a).
So ∩C∈CC is closed and bounded, and is therefore compact, by the Heine-Borel Theorem.
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