3.1 EXERCISES

Exercises marked with * are used in later sections, and exercises marked with * have hints or solutions in the back of the book.

- 1. Mark each statement True or False. Justify each answer.
 - (a) If S is a nonempty subset of N, then there exists an element $m \in S$ such that $m \ge k$ for all $k \in S$.
 - (b) The principle of mathematical induction enables us to prove that a statement is true for all natural numbers without directly verifying it for each number.
- 2. Mark each statement True or False. Justify each answer.
 - (a) A proof using mathematical induction consists of two parts: establishing the basis for induction and verifying the induction hypothesis.
 - (b) Suppose m is a natural number greater than 1. To prove P(k) is true for all $k \ge m$, we must first show that P(k) is false for all k such that $1 \le k < m$.
- *3. Prove that $1^2 + 2^2 + \cdots + n^2 = \frac{1}{6}n(n+1)(2n+1)$ for all $n \in \mathbb{N}$.

- *4. Prove that $1^3 + 2^3 + \cdots + n^3 = \frac{1}{4}n^2(n+1)^2$ for all $n \in \mathbb{N}$.
 - 5. Prove that $1^3 + 2^3 + \cdots + n^3 = (1 + 2 + \cdots + n)^2$ for all $n \in \mathbb{N}$. \$\frac{1}{2}\$
- *6. Prove that

$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}$$
, for all $n \in \mathbb{N}$.

- *7. Prove that $1 + r + r^2 + \cdots + r^n = (1 r^{n+1})/(1 r)$ for all $n \in \mathbb{N}$, when $r \neq 1$. \Im
- *8. Prove that

$$\frac{1}{3} + \frac{1}{15} + \frac{1}{35} + \dots + \frac{1}{4n^2 - 1} = \frac{n}{2n + 1}$$
, for all $n \in \mathbb{N}$.

- **9.** Prove that $1 + 2 + 2^2 + \cdots + 2^{n-1} = 2^n 1$, for all $n \in \mathbb{N}$.
- **10.** Prove that $1(1!) + 2(2!) + \cdots + n(n!) = (n+1)! 1$, for all $n \in \mathbb{N}$.
- **11.** Prove that

$$\frac{1}{2!} + \frac{2}{3!} + \dots + \frac{n}{(n+1)!} = 1 - \frac{1}{(n+1)!}$$
, for all $n \in \mathbb{N}$.

- **12.** Prove that $1 + 2 \cdot 2 + 3 \cdot 2^2 + \dots + n2^{n-1} = (n-1)2^n + 1$, for all $n \in \mathbb{N}$.
- **13.** Prove that $5^{2n} 1$ is a multiple of 8 for all $n \in \mathbb{N}$. \Rightarrow
- **14.** Prove that $9^n 4^n$ is a multiple of 5 for all $n \in \mathbb{N}$.
- **15.** Prove that $12^n 5^n$ is a multiple of 7 for all $n \in \mathbb{N}$.
- **16.** If a, b, and $c \in \mathbb{N}$ such that a b is a multiple of c, prove that $a^n b^n$ is a multiple of c for all $n \in \mathbb{N}$.
- 17. Indicate what is wrong with each of the following induction "proofs."
 - (a) **Theorem:** For each $n \in \mathbb{N}$, let P(n) be the statement "Any collection of n marbles consists of marbles of the same color." Then P(n) is true for all $n \in \mathbb{N}$.

Proof: Clearly, P(1) is a true statement. Now suppose that P(k) is a true statement for some $k \in \mathbb{N}$. Let S be a collection of k+1 marbles. If one marble, call it x, is removed, then the induction hypothesis applied to the remaining k marbles implies that these k marbles all have the same color. Call this color C. Now if x is returned to the set S and a different marble is removed, then again the remaining k marbles must all be of the same color C. But one of these mar-

Chapter 3 • The Real Numbers

(b) **Theorem:** For each $n \in \mathbb{N}$, let P(n) be the statement " $n^2 + 7n + 3$ is an even integer." Then P(n) is true for all $n \in \mathbb{N}$.

Proof: Suppose that P(k) is true for some $k \in \mathbb{N}$. That is, $k^2 + 7k + 3$ is an even integer. But then

$$(k+1)^2 + 7(k+1) + 3 = (k^2 + 2k + 1) + 7k + 7 + 3$$

= $(k^2 + 7k + 3) + 2(k + 4)$,

and this number is even, since it is the sum of two even numbers. Thus P(k+1) is true. We conclude by induction that P(n) is true for all $n \in \mathbb{N}$.

- **18.** Prove that $2 + 5 + 8 + \cdots + (3n 1) = \frac{1}{2}n(3n + 1)$ for all $n \in \mathbb{N}$.
- **19.** Conjecture a formula for the sum $5 + 9 + 13 + \cdots + (4n + 1)$, and prove your conjecture using mathematical induction. \Rightarrow
- 20. Prove that

$$(2)(6)(10)(14)\cdots(4n-2)=\frac{(2n)!}{n!}$$
, for all $n \in \mathbb{N}$.

- **21.** Prove that $\left(1 \frac{1}{2^2}\right)\left(1 \frac{1}{3^2}\right)\left(1 \frac{1}{4^2}\right) \cdots \left(1 \frac{1}{n^2}\right) = \frac{n+1}{2n}$, for all $n \in \mathbb{N}$ with $n \ge 2$.
- **22.** Prove that $(\cos x + i \sin x)^n = \cos(nx) + i \sin(nx)$, for all $n \in \mathbb{N}$, where $i = \sqrt{-1}$. You may use the identities $\cos(a+b) = \cos a \cos b \sin a \sin b$ and $\sin(a+b) = \sin a \cos b + \cos a \sin b$.
- **23.** Indicate for which natural numbers n the given inequality is true. Prove your answers by induction.
 - (a) $n^2 \le n! \, 2$
 - (b) $n^2 \le 2^n$
 - (c) $2^n < n!$
- *24. Use induction to prove Bernoulli's inequality: If 1 + x > 0, then $(1 + x)^n \ge 1 + nx$ for all $n \in \mathbb{N}$.
- **25.** Prove that for all integers $x \ge 8$, x can be written in the form 3m + 5n, where m and n are nonnegative integers. 3
- **26.** Consider the statement "For all integers $x \ge k$, x can be written in the form 5m + 7n, where m and n are nonnegative integers."
 - (a) Find the smallest value of k that makes the statement true.
 - (b) Prove the statement is true with k as in part (a).