# Minimal dynamical systems and C\*-algebras

#### Shen Lu

CU Boulder

MSU Denver September 18, 2020



Mathematics UNIVERSITY OF COLORADO BOULDER





## Outline

Ontivation

#### 2 Dynamical systems

- irrational rotation on the circle
- odometer action on the Cantor set
- O C\*-algebras by two examples
  - continuous functions on [0, 1]
  - *n* × *n* matrices
- Orossed product C\*-algebras
- My current research

## Motivation

Dynamical systems arise naturally: movement inside a mechanical watch, weather patterns in climate modelling, stirring a cup of trail mix, etc.

Mathematical formalization: Let X be a set (e.g. cup of trail mix, the real number line, or a circle) and  $\varphi : X \to X$  be a bijective map (1-to-1 and onto) with inverse  $\varphi^{-1}$ . Both  $\varphi$  and  $\varphi^{-1}$  can be iterated:

$$\begin{split} \varphi^2 &= \varphi \circ \varphi, \quad \varphi^3 = \varphi \circ \varphi \circ \varphi, \; \; \text{etc.,} \\ \varphi^{-2} &= \varphi^{-1} \circ \varphi^{-1}, \quad \varphi^{-3} = \varphi^{-1} \circ \varphi^{-1} \circ \varphi^{-1}, \; \; \text{etc.,} \end{split}$$

and we set 
$$\varphi^0 = \mathsf{Id}_X$$
, i.e.,  $\varphi^0(x) = x$ .

For each  $x \in X$  and integer n,  $\varphi^n(x)$  gives the location of x in X after n iterations of  $\varphi$ .

We will exclusively consider when X is a compact metric space and  $\varphi$  is a homeomorphism.

## Definitions and questions

Given a dynamical system,  $(X, \varphi)$  with iterations  $\varphi^n$  for all  $n \in \mathbb{Z}$ , we can ask

- Is there is fixed point:  $\varphi(x) = x$ , or equivalently,  $\varphi^n(x) = x$  for all *n*?
- Is there a periodic point:  $\varphi^m(x) = x$  for some integer m?
- For a selected x ∈ X, what does the orbit of x looks like in X? The orbit of x is the collection of possible locations of x through all iterations of φ:

 $\operatorname{orb}(\mathbf{x}) = \{\varphi^n(\mathbf{x}) : n \in \mathbb{Z}\}.$ 

Let X be the real number line  $\mathbb{R}$  and the map  $\varphi : \mathbb{R} \to \mathbb{R}$  be given by  $\varphi(t) = t + 1$ , shifting the real number line to the right by 1:



In particular, for t = 0,

..., 
$$\varphi^{-2}(\mathbf{0}) = -2, \varphi^{-1}(\mathbf{0}) = -1, \varphi^{0}(\mathbf{0}) = 0, \varphi^{1}(\mathbf{0}) = 1, \varphi^{2}(\mathbf{0}) = 2, ...$$

In other words,  $orb(0) = \mathbb{Z}$ . Moreover, there is no fixed or periodic point.

*Question*: what if the map is  $\varphi(t) = t^3$ ? (some stretching and compressing of the real number line with fixed points)

Fix rational number  $\theta = 1/4$ . Let X be the unit circle in the complex plane:  $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$ , and  $\varphi(z) = e^{2\pi i \theta} z \in \mathbb{T}$ .

Consider  $z = e^{2\pi i} = 1 + 0i$ ,



Fix rational number  $\theta = 1/4$ . Let X be the unit circle in the complex plane:  $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$ , and  $\varphi(z) = e^{2\pi i \theta} z$ .

Consider  $z = e^{2\pi i} = 1 + 0i$ ,  $\varphi^1(z) = e^{2\pi i \frac{1}{4}} = 0 + 1i$ 



Fix rational number  $\theta = 1/4$ . Let X be the unit circle in the complex plane:  $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$ , and  $\varphi(z) = e^{2\pi i \theta} z$ .

Consider  $z = e^{2\pi i} = 1 + 0i$ ,  $\varphi^2(z) = e^{2\pi i \frac{1}{4}} e^{2\pi i \frac{1}{4}} = -1 + 0i$ 



Fix rational number  $\theta = 1/4$ . Let X be the unit circle in the complex plane:  $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$ , and  $\varphi(z) = e^{2\pi i \theta} z$ .

Consider  $z = e^{2\pi i} = 1 + 0i$ ,  $\varphi^3(z) = e^{2\pi i \frac{1}{4}} e^{2\pi i \frac{1}{4}} e^{2\pi i \frac{1}{4}} = 0 - 1i$ 



Fix rational number  $\theta = 1/4$ . Let X be the unit circle in the complex plane:  $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$ , and  $\varphi(z) = e^{2\pi i \theta} z$ .

Consider  $z = e^{2\pi i} = 1 + 0i$ ,  $\varphi^4(z) = e^{2\pi i \frac{1}{4}} e^{2\pi i \frac{1}{4}} e^{2\pi i \frac{1}{4}} e^{2\pi i \frac{1}{4}} = 1 + 0i = z$ 



Together,

$$orb(z) = \{1 + 0i, 0 + 1i, -1 + 0i, 0 - 1i\}$$



Question: what if we started with a different z?

Fix irrational number  $\theta = \sqrt{2}$ . Again, let X be the unit circle in the complex plane:  $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$ , and  $\varphi(z) = e^{2\pi i \theta} z$ .

Consider  $z = e^{2\pi i} = 1 + 0i$ ,



Fix irrational number  $\theta = \sqrt{2}$ . Again, let X be the unit circle in the complex plane:  $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$ , and  $\varphi(z) = e^{2\pi i \theta} z$ .

 $\varphi(\mathbf{z})=e^{2\pi i\sqrt{2}}.$ 0.5 -0.5 0.5 -0.5

Shen Lu (CU Boulder) Minimal dynamical systems and C\*-algebras

Fix irrational number  $\theta = \sqrt{2}$ . Again, let X be the unit circle in the complex plane:  $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$ , and  $\varphi(z) = e^{2\pi i \theta} z$ .

 $\varphi^2(\mathbf{z}) = e^{4\pi i \sqrt{2}}.$ 0.5 -0.5 0.5 -0.5

Shen Lu (CU Boulder) Minimal dynamical systems and C\*-algebras

Fix irrational number  $\theta = \sqrt{2}$ . Again, let X be the unit circle in the complex plane:  $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$ , and  $\varphi(z) = e^{2\pi i \theta} z$ .

 $\varphi^3(\mathbf{z}) = e^{6\pi i\sqrt{2}}.$ 0.5 -0.5 0.5 -0.5

Fix irrational number  $\theta = \sqrt{2}$ . Again, let X be the unit circle in the complex plane:  $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$ , and  $\varphi(z) = e^{2\pi i \theta} z$ .

 $\varphi^n(z)$  for  $n = 0, 1, 2, \dots, 9$  (they are 10 elements in orb(z))



Fix irrational number  $\theta = \sqrt{2}$ . Again, let X be the unit circle in the complex plane:  $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$ , and  $\varphi(z) = e^{2\pi i \theta} z$ .

 $\varphi^n(z)$  for  $n = 0, 1, 2, \dots, 49$  (they are 50 elements in orb(z))



Fix irrational number  $\theta = \sqrt{2}$ . Again, let X be the unit circle in the complex plane:  $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$ , and  $\varphi(z) = e^{2\pi i \theta} z$ .

 $\varphi^n(z)$  for  $n = 0, 1, 2, \dots, 99$  (they are 100 elements in orb(z))



Fix irrational number  $\theta = \sqrt{2}$ . Again, let X be the unit circle in the complex plane:  $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$ , and  $\varphi(z) = e^{2\pi i \theta} z$ .

 $\varphi^n(z)$  for  $n = 0, 1, 2, \dots, 499$  (they are 500 elements in orb(z))



 $\varphi^n(\mathbf{z})$  for all integers *n* (entire orbit of **z**)



In this situation, we say that  $\operatorname{orb}(z)$  is dense in the circle  $\mathbb{T}$ .

Question: what if we started with a different z?

#### Proposition

For  $\theta$  an irrational number,  $\operatorname{orb}(z)$  is dense in  $\mathbb{T}$  for every  $z \in \mathbb{T}$ .

Intuitively, the Proposition suggests that the dynamical system from an irrational rotation of the circle is much more complex, and the dynamics involve "almost every" point on the circle  $\mathbb{T}$ .

#### Definition

A dynamical system  $(X, \varphi)$  is said to be minimal if for every point x in X, its orbit  $\{\varphi^n(x) : n \in Z\}$  is dense in X.

Consider the space  ${\mathcal C}$  of infinite strings of 0's and 1's:

$$\mathcal{C} = \left\{ (a_i)_{i \in \mathbb{N}} : a_i \in \{0, 1\} \right\}$$

For example,  $\cdots$  1001011,  $\cdots$  00000000,  $\cdots$  11111111 are all elements of C.

With the appropriate metric on C, it is a Cantor set (a non-empty, compact, totally disconnected metric space having no isolated points).



We write the sequence  $(a_i)_{i \in \mathbb{N}}$  in  $\mathcal{C}$  from right to left:  $\cdots a_3 a_2 a_1$  to make the map  $\varphi : \mathcal{C} \to \mathcal{C}$  more intuitive: the map  $\varphi$  is given by "adding 1 and carry in base two". For example,

$$\begin{array}{c} & \cdots 101\,011\,001\,011 \\ + & 1 \\ \hline & \cdots 101\,011\,001\,100 \end{array}$$

For the special element in  $C: \cdots 111111$  (the sequence of all 1's). We set  $\varphi(\cdots 111111) = \cdots 000000$ 

Just like a car odometer, but infinite and performs addition in base two:



This is called the odometer action on the Cantor set. The dynamical system  $(\mathcal{C}, \varphi)$  is also minimal.

Shen Lu (CU Boulder) Minimal dynamical systems and C\*-algebras

22 / 30

#### Definition

A C\*-algebra is a closed \*-subalgebra of the bounded operators on a Hilbert space.

A C\*-algebra is a rich algebraic structure with a "seemingly strict but very convenient" norm  $\|\cdot\|$ .



# Commutative C\*-algebras

Consider the space of all  $\mathbb{C}$ -valued continuous functions on the unit interval:

$$C([0,1]) := \{f : [0,1] \rightarrow \mathbb{C} : f \text{ is continuous}\}.$$

This space has many analytic and algebraic structures: for  $f, g \in C([0, 1])$ ,

• addition: 
$$(f + g)(x) := f(x) + g(x)$$

- multiplication  $(f \cdot g)(x) := f(x) \cdot g(x)$
- scalar multiplication:  $(\lambda f)(x) := \lambda f(x)$  (for  $\lambda$  in  $\mathbb{C}$ )
- involution:  $f^*(x) := \overline{f(x)}$

• norm: 
$$\|f\|_{\infty} = \sup_{x \in X} |f(x)|$$

• ...

• C\*-identity: 
$$\left\|f^*\cdot f\right\|_{\infty} = \left\|f\right\|_{\infty}^2$$

#### Example

The field of complex numbers  $\mathbb{C}$  is a C\*-algebra with involution given by complex conjugation  $\lambda^* = \overline{\lambda}$ .

Fix *n* a strictly positive integer. Consider the collection of all  $n \times n$  matrices with complex entries:  $M_n(\mathbb{C})$ . For  $A, B \in M_n(\mathbb{C})$ 

- addition: A + B
- multiplication: AB
- scalar multiplication:  $\lambda A$  (for  $\lambda$  in  $\mathbb{C}$ )

• involution: 
$$A^*(x) := \overline{A^{\mathsf{T}}}$$

• norm:  $\|A\|_{op} = \inf \left\{ c \ge 0 : \|Av\| \le c \|v\| \text{ for all } v \in \mathbb{C}^n \right\}$ 

• C\*-identity: 
$$||A^*A||_{op} = ||A||_{op}^2$$

#### Example

The field of complex numbers  $\mathbb{C}$  is a C\*-algebra with involution given by complex conjugation  $\lambda^* = \overline{\lambda}$ .

Given a dynamical system, we can associate a C\*-algebra that captures both the underlying space X and what the map  $\varphi$  does. Such a C\*-algebra is called a crossed product C\*-algebra and sometimes denoted by  $C^*(X, \varphi)$ .

#### Example

For  $\theta$  irrational,  $C^*(\mathbb{T}, \varphi)$  is called an irrational rotation algebra.

#### Example

 $C^*(\mathcal{C}, \varphi)$  is an example of a Bunce-Deddens algebra.

#### Definition

A C\*-algebra is simple if it does not contain any non-trivial closed two-sided ideals.

Loosely speaking, simple C\*-algebras are the building blocks of C\*-algebra theory. For example,  $M_n(\mathbb{C})$  is simple for every  $n \in \mathbb{N}$ .

#### Theorem

Up to isomorphism of C\*-algebra, every non-zero finite dimensional C\*-algebra is of the form

$$M_{n_1}(\mathbb{C}) \oplus M_{n_2}(\mathbb{C}) \oplus \cdots \oplus M_{n_k}(\mathbb{C})$$

for some integers  $n_1, n_2, \cdots, n_k$ .

#### Theorem

 $C^*(X, \varphi)$  is simple if and only if  $(X, \varphi)$  is minimal.

27 / 30

The noncommutative solenoids are a family of crossed product C\*-algebras with underlying space the *p*-solenoid group  $S_p$  (inverse limit of circles connected by *p*-fold self-covers). We form the C\*-algebra by letting the group  $\mathbb{Z}\left[\frac{1}{p}\right]$  act on  $S_p$  by rotation of the circle at each stage. Alternatively, a noncommutative solenoid is an inverse limit of rotation algebras.

A *p*-solenoid  $S_p$  is a compact metrizable space that is connected, but not locally connected or path connected. The group  $\mathbb{Z}\left[\frac{1}{p}\right]$  is a discrete group that is not finitely generated.

*Question:* what is a necessary and sufficient condition for two noncommutative solenoids to be (strongly) Morita equivalent?

- K. R. Davidson, C\*-algebras by examples
- G. Murphy, C\*-algebras and operator theory
- 3 I. Putnam, Cantor Minimal Systems
- O. P. Williams, Crossed products of C\*-algebras

# Thank you!

Shen Lu (CU Boulder) Minimal dynamical systems and C\*-algebras

æ