Constructing Finitely Generated Projective Modules for Noncommutative Solenoids

Shen Lu

CU Boulder

AMS Special Session on Fractal Geometry, Dynamical Systems, and Applications JMM 2020 January 18, 2020

Shen Lu (CU Boulder) Constructing Projective Modules for NC Solenoids

0 / 17

Outline

- Motivation
- 2 Noncommutative Solenoid
 - Twisted group C*-algebra
 - Direct limit of rotation algebras
 - Crossed product C*-algebra
- Heisenberg equivalence bimodules
- Building bimodules from the "inside-out"
- Selating the two constructions
- O Example

- Twisted group C*-algebras associated to non-finitely generated groups
- Noncommutative torus is an important example in noncommutative geometry and has been intensely studied
- Heisenberg bimodules provide the natural setting for studying duality theory of Gabor systems
- Solenoid group, *p*-adic analysis, etc.

Let Γ be a discrete locally compact group. A *multiplier* σ on Γ is a normalized group 2-cocycle on Γ with values in \mathbb{T} (for the trivial group action of Γ on \mathbb{T}): for all $r, s, t \in \Gamma$, identity $e \in \Gamma$,

The twisted group C*-algebra $C^*(\Gamma, \sigma)$ is the C*-enveloping algebra of $\ell^1(\Gamma, \sigma)$, which is $\ell^1(\Gamma)$ with *twisted convolution and involution*: for all $s \in \Gamma$,

$$f * g(s) = \sum_{t \in \Gamma} f(t)g(t^{-1}s)\sigma(t, t^{-1}s);$$

 $f^*(s) = \overline{\sigma(s, -s)f(-s)}.$

Fix prime p. Define

$$\mathbb{Z}\left[\frac{1}{p}\right] := \left\{\frac{j}{p^k} \in \mathbb{Q} : z \in \mathbb{Z}, k \in \mathbb{N}\right\},$$

and denote by Γ the discrete abelian group $\mathbb{Z}[1/\rho] \times \mathbb{Z}[1/\rho]$. We wish to study $C^*(\Gamma, \sigma)$.

Theorem (Packer, Latrémolière, '13)

For a fixed prime p, the set $\Xi_p := \{(\alpha_n)_{n \in \mathbb{N}} : \alpha_0 \in [0, 1) \text{ and } \forall n \in \mathbb{N}, \exists b_n \in \{0, \dots, p-1\} \text{ such that } p\alpha_{n+1} = \alpha_n + b_n\}$ forms a group under pointwise addition modules one. Every multiplier on Γ is cohomologous to the multiplier:

$$\Psi_{\alpha}: \left\{ \begin{aligned} \mathsf{\Gamma} \times \mathsf{\Gamma} & \to & \mathbb{T} \\ \left(\left(\frac{j_1}{p^{k_1}}, \frac{j_2}{p^{k_2}} \right), \left(\frac{j_3}{p^{k_3}}, \frac{j_4}{p^{k_4}} \right) \right) & \mapsto \exp\left(2\pi i \alpha_{(k_1+k_4)} j_1 j_4 \right). \end{aligned} \right.$$

Additionally, Ψ_{α} and Ψ_{β} are cohomologous iff $\alpha = \beta$.

$$\Xi_p := \{ (\alpha_n)_{n \in \mathbb{N}} : \alpha_0 \in [0, 1) \text{ and } \forall n \in \mathbb{N}, \exists b_n \in \{0, \dots, p-1\} \\ \text{ such that } p\alpha_{n+1} = \alpha_n + b_n \}$$

Note:

- $\ \, {\bf \underline{O}} \ \, \Xi_{p}\cong \mathscr{S}_{p}, \ \, {\rm where} \ \, \mathscr{S}_{p} \ \, {\rm is \ the} \ \, p{\rm -solenoid \ group}.$
- So For $\alpha = (\alpha_n)_{n \in \mathbb{N}} \in \Xi_p$, if α_N is irrational for any N, then α is a sequence of distinct irrational numbers.
- We can associate a unique *p*-adic integer x_α = ∑_{j=0}[∞] b_npⁿ for each α ∈ Ξ_p.

Definition

For a fixed prime p and $\alpha \in \Xi_p$, we denote by $\mathscr{A}^{\mathscr{S}}_{\alpha}$ the twisted group C*-algebra $C^*(\Gamma, \Psi_{\alpha})$, and call them *noncommutative solenoids*.

Alternative Definition 1. Let A_{θ} denote the rotation C*-algebra, then $A_{\alpha_0} \xrightarrow{\varphi_0} A_{\alpha_2} \xrightarrow{\varphi_1} A_{\alpha_4} \xrightarrow{\varphi_2} \cdots$ converges to $\mathscr{A}_{\alpha}^{\mathscr{S}}$.

Alternative Definition 2. Let ρ^{α} be the action of $\mathbb{Z}[1/p]$ on \mathscr{S}_p defined by

$$\rho_{\frac{j}{p^k}}^{\alpha}\left((z_n)_{n\in\mathbb{N}}\right) = \left(\exp\left(2\pi i\alpha_{k+n}j\right)z_n\right)_{n\in\mathbb{N}}.$$

Then $C(\mathscr{S}_p) \rtimes_{\rho^{\alpha}} \mathbb{Z}[1/p]$ is *-isomorphic to $\mathscr{A}_{\alpha}^{\mathscr{S}}$.

Strong Morita Equivalence

Two C*-algebras A and B are *(strongly)* Morita equivalent if there exists an A-B-equivalence bimodule.

Definition

A Banach A-B-bimodule X is called an A-B-equivalence bimodule if it is both a left Hilbert A-module and a right Hilbert B-module such that

• The ideals $_A\langle X,X\rangle$ and $\langle X,X\rangle_B$ are dense in A and B, respectively.

•
$$\langle a \cdot x, y \rangle_B = \langle x, a^* \cdot y \rangle_B$$
 and $_A \langle x \cdot b, y \rangle =_A \langle x, y \cdot b^* \rangle$

•
$$_A\langle x,y\rangle \cdot z = x \cdot \langle y,z\rangle_B.$$

Question

Given
$$\alpha$$
, $\beta \in \Xi_p$, is $\mathscr{A}^{\mathscr{S}}_{\alpha}$ Morita equivalent to $\mathscr{A}^{\mathscr{S}}_{\beta}$?

Question

Given
$$\alpha \in \Xi_p$$
, what are some $\beta \in \Xi_p$ such that $\mathscr{A}^{\mathscr{S}}_{\alpha}$ Morita equivalent to $\mathscr{A}^{\mathscr{S}}_{\beta}$?

We follow a construction of Rieffel. Let M be a locally compact abelian group, and $G := M \times \widehat{M}$. The Heisenberg multiplier $\eta : (M \times \widehat{M}) \times (M \times \widehat{M})$ is given by

$$\eta((m,s),(n,t)) = \langle m,t \rangle.$$

Let D be a lattice in $M \times \widehat{M}$, and denote by D^{\perp} the lattice in $M \times \widehat{M}$ given by

$$D^{\perp} = \left\{ (n,t) \in M \times \widehat{M} : \forall (m,s) \in D, \eta ((m,s), (n,t)) \overline{\eta ((n,t), (m,s))} = 1 \right\}$$

Theorem (Rieffel '88)

There is a $C^*(D,\eta)$ - $C^*(D^{\perp},\overline{\eta})$ -equivalence bimodule.

Embed $\mathbb{Z}\left[1/p\right] \times \mathbb{Z}\left[1/p\right]$ into $M \times \widehat{M}$

~

Let $M := \mathbb{Q}_p \times \mathbb{R}$, where \mathbb{Q}_p denote the field of *p*-adic numbers. Recall that for a fix prime *p*, a *p*-adic number is a formal series

$$\sum_{j=v}^{\infty}a_jp^j, \quad a_j\in\{0,1,\ldots,p-1\}, \quad v\in\mathbb{Z},$$

and \mathbb{Q}_p is self-duel with the pairing $\mathbb{Q}_p \times \mathbb{Q}_p \to \mathbb{T}$, $\langle x, y \rangle = e^{2\pi i \{xy\}_p}$, where $\{x\}_p$ denotes the fractional part of x:

$$\left\{\sum_{j=\nu}^{\infty}a_{j}p^{j}\right\}_{p}=\sum_{j=\nu}^{-1}a_{j}p^{j}.$$

Then M is self-dual.

Embed $\mathbb{Z}\left[1/p\right] \times \mathbb{Z}\left[1/p\right]$ into $M \times \widehat{M}$

We have $M = \widehat{M} = \mathbb{Q}_p \times \mathbb{R}$. For any $(x, \theta) \in [\mathbb{Q}_p \setminus \{0\}] \times [\mathbb{R} \setminus \{0\}]$, the map

$$\iota_{x,\theta}: \begin{cases} \mathbb{Z}\left[1/\rho\right] \times \mathbb{Z}\left[1/\rho\right] & \to \quad [\mathbb{Q}_{\rho} \times \mathbb{R}] \times [\mathbb{Q}_{\rho} \times \mathbb{R}] \\ (r_1 \times r_2) & \mapsto \left[(x \cdot r_1, \theta \cdot r_1), (r_2, r_2)\right]. \end{cases}$$

is an embedding, and we denote the image of $\iota_{x,\theta}$ by $D_{x,\theta}$. One can check that $D_{x,\theta}^{\perp} \cong \mathbb{Z} \left[1/p \right] \times \mathbb{Z} \left[1/p \right]$.

Theorem (Packer, Latrémolière, '13)

For every nonzero $\alpha \in \Xi_p$ with $b_n \neq 0$ for some $n \in \mathbb{N}$, $C^*(D_{x,\theta},\eta)$ is *-isomorphic to $\mathscr{A}_{\alpha}^{\mathscr{S}}$ for $x = x_{\alpha}$ and $\theta = \alpha_0$. Furthermore, $C^*(D_{x,\theta}^{\perp},\overline{\eta})$ is *-isomorphic to a noncommutative solenoid.

Recall that for each $\alpha \in \Xi_p$ with $\alpha_{n+1} = p\alpha_n + b_n$ for all $n \in \mathbb{N}$, we can associate a unique *p*-adic number $x_{\alpha} = \sum_{j=0}^{\infty} b_j p^j$.

Proposition (L.)

Same set up as the theorem above, and let $x_{\alpha}^{-1} = \sum_{j=\nu}^{\infty} a_j p^j \in \mathbb{Q}_p$. Then $C^*(D_{x,\theta}^{\perp},\overline{\eta})$ is *-isomorphic to $\mathscr{A}_{\beta}^{\mathscr{S}}$, where $\beta = (\beta_n)_{n \in \mathbb{N}}$ is given by

$$\beta_n = \frac{1}{\theta p^n} + \frac{\sum_{j=v}^{n-1} a_j p^j}{p^n}$$

Compare with $x_{\alpha} = \sum_{j=v}^{\infty} b_j p^j$, and

$$\alpha_n = \frac{\alpha_0 + \sum_{j=0}^{n-1} b_j p^j}{p^n}.$$

This establishes Morita equivalence between $\mathscr{A}^{\mathscr{S}}_{\alpha}$ and $\mathscr{A}^{\mathscr{S}}_{\beta}$.

Building projective bimodules from the "inside-out"

Let A_{θ} denote the rotation C*-algebra. Recall that $\mathscr{A}_{\alpha}^{\mathscr{S}} = \varinjlim A_{\alpha_{2n}}$. We wish to establish equivalence bimodule X_{2n} between $A_{\alpha_{2n}}$ and $A_{\beta_{2n}}$:

Lemma (Rieffel '82)

Fix $\theta \in \mathbb{R} \setminus \mathbb{Q}$. Let *P* be a nontrivial projection in A_{θ} such that $\tau(P) = c\theta + d$ with *c* and *d* generating \mathbb{Z} . Set $\lambda = \frac{a\theta + b}{c\theta + d}$ for any $a, b \in \mathbb{Z}$ such that $ad - bc = \pm 1$. Then $PA_{\theta}P \cong A_{\lambda}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

In the case when $\alpha \in \Xi_p$ is an irrational sequence,

Under certain conditions on the projection P, $\varinjlim_{\alpha_n} P$ converges to some noncommutative solenoid $\mathscr{A}_{\beta}^{\mathscr{S}}$, establishing Morita equivalence between $\mathscr{A}_{\alpha}^{\mathscr{S}}$ and $\mathscr{A}_{\beta}^{\mathscr{S}}$.

Theorem (L.)

Let p be prime and $\alpha = (\alpha_j)_{j \in \mathbb{N}} \in \Xi_p$ an irrational sequence such that $x_{\alpha} \in \mathbb{Z}_p^{\times}$. Then the Heisenberg bimodule construction gives the same Morita equivalence bimodules as building equivalence bimodules from the "inside out" using a fixed projection $P \in A_{\alpha_0}$ with $\tau_0(P) = \alpha_0$.

Details:
$$\tau_{2n}(P) = p^{2n} \alpha_{2n} - \sum_{j=0}^{2n-1} b_j p^j$$
, that is,
 $c_{2n} = p^{2n}$ and $d_{2n} = -\sum_{j=0}^{2n-1} b_j p^j$.

Taking

$$a_{2n} = \sum_{j=0}^{2n-1} a_j p^j \text{ and } b_{2n} = p^{-2n} \left(\left(\sum_{j=0}^{2n-1} a_j p^j \right) \left(-\sum_{j=0}^{2n-1} b_j p^j \right) + 1 \right),$$

and setting $\beta_{2n} = (a_{2n}\alpha_{2n} + b_{2n})/(c_{2n}\alpha_{2n} + d_{2n})$, we obtain $\beta = (\beta_n)_{n \in \mathbb{N}}$, which turns out to be the same β as the one from the Heisenberg module and the same β as the one from the Heisenberg module.

Example. Fix p = 3 prime and an irrational sequence $\alpha \in \Xi_3$ by

$$(\alpha_n)_{n\in\mathbb{N}} = \left(\theta, \frac{\theta+2}{3}, \frac{\theta+5}{9}, \frac{\theta+23}{27}, \frac{\theta+50}{81}, \frac{\theta+212}{243}, \frac{\theta+455}{729}, \dots\right),$$

which determines the *p*-adic integer $x = \sum_{j=0}^{\infty} b_j p^j$ with

$$(b_j)_{j\in\mathbb{N}} = (2, 1, 2, 1, 2, 1, \dots) = (\overline{2, 1}).$$

Then $x^{-1} = \sum_{j=0}^{\infty} a_j p^j \in \mathbb{Z}_3$, where

$$(a_j)_{j\in\mathbb{N}} = (2,0,2,1,0,1,2,1,0,1,\dots) = (2,0,\overline{2,1,0,1}).$$

Via the Heisenberg bimodules construction, we get

$$(\beta_n)_{n\in\mathbb{N}} = \left(\frac{1}{\theta}, \frac{2\theta+1}{3\theta}, \frac{2\theta+1}{9\theta}, \frac{20\theta+1}{27\theta}, \frac{47\theta+1}{81\theta}, \frac{47\theta+1}{243\theta}, \frac{290\theta+1}{729\theta}, \dots\right)$$

It is easy to check that A_{α_j} is Morita equivalent to A_{β_j} for j = 0, 2, 4 and 6.

- F. Latrémolière and J. Packer, Noncommutative solenoids, New York J. Math., 2018
- F. Latrémolière and J. Packer, *Explicit construction of equivalence bimodules between noncommutative solenoids*, Vol. 650. Contemp. Math. Amer. Math. Soc., 2013
- M. Rieffel, The cancellation theorem for projective modules over irrational rotation C*-algebras, Proc. London Math., 1983
- M. Rieffel, Projective modules over higher-dimensional non-commutative tori, Canad. J. Math., 1988
- A. M. Robert, A course in p-adic analysis, Vol. 198, Graduate Texts in Mathematics. Springer, 2000

Thank you!

Shen Lu (CU Boulder) Constructing Projective Modules for NC Solenoids