Irrational noncommutative solenoids and their finitely generated projective modules

Shen Lu

CU Boulder

ASU C*-Seminar Feburary 17, 2021

Mathematics UNIVERSITY OF COLORADO **BOULDER**

Outline

Motivation

- 2 Noncommutative Solenoid
 - Twisted group C*-algebra
 - Direct limit of rotation algebras
 - Crossed product C*-algebra
- Directed systems of equivalence bimodules (building bimodules from the "inside-out")
- Heisenberg equivalence bimodules
- Second Second

Interest and Motivation

• Twisted group C*-algebras associated to non-finitely generated groups:

$$\mathbb{Z}\left[\frac{1}{p}\right] := \left\{\frac{j}{p^k} \in \mathbb{Q} : z \in \mathbb{Z}, k \in \mathbb{N}\right\}$$

- Rotation algebra, noncommutative geometry
- Other applications of Heisenberg bimodules and directed systems of equivalence bimodules
- Relation to *p*-adic analysis, etc.

Noncommutative Solenoid

Fix prime p. Define

$$\mathbb{Z}\left[\frac{1}{p}\right] := \left\{\frac{j}{p^k} \in \mathbb{Q} : z \in \mathbb{Z}, k \in \mathbb{N}\right\},$$

and denote by Γ the discrete abelian group $\mathbb{Z}[1/p] \times \mathbb{Z}[1/p]$. We wish to study $C^*(\Gamma, \sigma)$, where $\sigma : \Gamma \times \Gamma \to \mathbb{T}$ is a *multiplier* (normalized group 2-cocycle on Γ with values in \mathbb{T}).

Theorem (Packer, Latrémolière, '13)

For a fixed prime p, the set $\Xi_p := \{(\alpha_n)_{n \in \mathbb{N}} : \alpha_0 \in [0, 1) \text{ and } \forall n \in \mathbb{N}, \exists x_n \in \{0, \dots, p-1\} \text{ such that } p\alpha_{n+1} = \alpha_n + x_n\}$ forms a group under pointwise addition modulus one. Every multiplier on Γ is cohomologous to the multiplier:

$$\Psi_{\alpha}: \left\{ \begin{aligned} \mathsf{\Gamma} \times \mathsf{\Gamma} & \to & \mathbb{T} \\ \left(\left(\frac{j_1}{p^{k_1}}, \frac{j_2}{p^{k_2}} \right), \left(\frac{j_3}{p^{k_3}}, \frac{j_4}{p^{k_4}} \right) \right) & \mapsto \exp\left(2\pi i \alpha_{(k_1+k_4)} j_1 j_4 \right). \end{aligned} \right.$$

Additionally, Ψ_{α} and Ψ_{β} are cohomologous iff $\alpha = \beta$.

Definition

For a fixed prime p and $\alpha \in \Xi_p$, we denote by $\mathscr{A}^{\mathscr{S}}_{\alpha}$ the twisted group C*-algebra $C^*(\Gamma, \Psi_{\alpha})$, and call them *noncommutative solenoids*.

$$\Xi_p := \{ (\alpha_n)_{n \in \mathbb{N}} : \alpha_0 \in [0, 1) \text{ and } \forall n \in \mathbb{N}, \exists x_n \in \{0, \dots, p-1\}$$
such that $p\alpha_{n+1} = \alpha_n + x_n \}$

Lemma

Let

 $\Omega_{p} := \{ (\alpha_{n})_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} : \forall n \in \mathbb{N}, \exists x_{n} \in \mathbb{Z} \text{ such that } p\alpha_{n+1} = \alpha_{n} + x_{n} \},$ which is a group under pointwise addition. The map $h : \Omega_{p} \to \Xi_{p}$ given by $h((a_{n})_{n \in \mathbb{N}}) = (a_{n} \mod \mathbb{Z})_{n \in \mathbb{N}}$ defines a surjective group homomorphism. For $\alpha' \in \Omega_{p}$ and $\alpha \in \Xi_{p}, \ \mathscr{A}_{\alpha'}^{\mathscr{G}} \cong \mathscr{A}_{\alpha}^{\mathscr{G}}$ if and only if $h(\alpha') = \alpha$. **Alternative Definition 1.** Let A_{θ} denote the rotation algebra associated to θ , then

$$A_{\alpha_0} \xrightarrow{\varphi_0} A_{\alpha_2} \xrightarrow{\varphi_1} A_{\alpha_4} \xrightarrow{\varphi_2} \cdots$$

converges to $\mathscr{A}_{\alpha}^{\mathscr{S}}$, where $\varphi_n : A_{\alpha_{2n}} \to A_{\alpha_{2n+2}}$ is the unique homomorphism given by

$$arphi_n(\mathit{U}_{lpha_{2n}}) = \mathit{U}^p_{lpha_{2n+2}}$$
 and $arphi_n(\mathit{V}_{lpha_{2n}}) = \mathit{V}^p_{lpha_{2n+2}}.$

Alternative Definition 2. Let ρ^{α} be the action of $\mathbb{Z}[1/p]$ on \mathscr{S}_p defined by

$$\rho_{\frac{j}{p^k}}^{\alpha}\left((z_n)_{n\in\mathbb{N}}\right) = \left(\exp\left(2\pi i\alpha_{k+n}j\right)z_n\right)_{n\in\mathbb{N}}.$$

Then $C(\mathscr{S}_p) \rtimes_{\rho^{\alpha}} \mathbb{Z}[1/p]$ is *-isomorphic to $\mathscr{A}_{\alpha}^{\mathscr{S}}$.

There are three distinct subclasses of NC solenoids based on $\alpha \in \Xi_p$:

- α is periodic (necessarily rational): periodic rational nc solenoid
- α is rational and aperiodic: *aperiodic rational nc solenoid*
- α is irrational (necessarily aperiodic), *irrational nc solenoid*

Theorem (Packer, Latrémolière, '13)

$$\mathcal{K}_0\left(\mathscr{A}_{\alpha}^{\mathscr{S}}
ight) = ext{ an Abelian extension of } \mathbb{Z}\left[rac{1}{p}
ight] ext{ by } \mathbb{Z} ext{ determined by } x_{lpha}$$

 $\mathcal{K}_1\left(\mathscr{A}_{lpha}^{\mathscr{S}}
ight) = \mathbb{Z}\left[rac{1}{p}
ight] imes \mathbb{Z}\left[rac{1}{p}
ight]$

More interestingly, all tracial states of of $\mathscr{A}^{\mathscr{S}}_{\alpha}$ lift to a single trace τ on $\mathcal{K}_0\left(\mathscr{A}^{\mathscr{S}}_{\alpha}\right)$ with range

$$\tau\left(\mathcal{K}_{0}\left(\mathscr{A}_{\alpha}^{\mathscr{S}}\right)\right) = \varinjlim \mathbb{Z} \oplus \alpha_{n}\mathbb{Z} = \{z + y\alpha_{n} : z, y \in \mathbb{Z}, n \in \mathbb{N}\}.$$

Two C*-algebras A and B are *(strongly)* Morita equivalent if there exists an A-B-equivalence bimodule.

Definition

An A-B-bimodule X is called an A-B-equivalence bimodule if it is both a left Hilbert A-module and a right Hilbert B-module such that

• The ideals $_A\langle X,X\rangle$ and $\langle X,X\rangle_B$ are dense in A and B, respectively.

•
$$\langle a \cdot x, y \rangle_B = \langle x, a^* \cdot y \rangle_B$$
 and $_A \langle x \cdot b, y \rangle =_A \langle x, y \cdot b^* \rangle$

•
$$_A\langle x,y\rangle \cdot z = x \cdot \langle y,z\rangle_B.$$

Many algebraic properties are preserved under Morita equivalence: ideal structure, representation theory, *K*-theory, etc.

Example

for

For any C*-algebra A and a full projection $P \in M_k(A)$ (i.e. $\overline{M_k(A)PM_k(A)} = M_k(A)$), PA^k is a $PM_k(A)P$ -A-equivalence bimodule with

$$\langle \mathsf{Pa}, \mathsf{Pb} \rangle_{\mathsf{A}} = \sum_{i=1}^{i} u_i^* v_i \quad \text{and} \quad (\langle \mathsf{Pa}, \mathsf{Pb} \rangle_{\mathsf{PM}_k(\mathsf{A})\mathsf{P}})_{ij} = u_i v_j^*,$$

 $\mathsf{Pa} = [u_1, \dots, u_k], \mathsf{Pb} = [v_1, \dots, v_k] \in \mathsf{PA}^k.$

Theorem (Rieffel, '81)

If A and B are unital C*-algebras that are Morita equivalent, then each is a full corner of the algebra of $n \times n$ matrices over the other.

Question

Given α , $\beta \in \Xi_p$, is $\mathscr{A}^{\mathscr{S}}_{\alpha}$ Morita equivalent to $\mathscr{A}^{\mathscr{S}}_{\beta}$?

Approach:

- If $\alpha \in \Xi_p$, $\beta \in \Xi_q$, and $p \neq q$, then $K_1\left(\mathscr{A}_{\alpha}^{\mathscr{S}}\right) \neq K_1\left(\mathscr{A}_{\beta}^{\mathscr{S}}\right)$
- There must be some $m \in \mathbb{N}$ and projection $P \in M_m\left(\mathscr{A}_{\alpha}^{\mathscr{S}}\right)$ such that $\mathscr{A}_{\beta}^{\mathscr{S}} \cong PM_m\left(\mathscr{A}_{\alpha}^{\mathscr{S}}\right) P$.
- Any P ∈ M_m (𝔄_α) is unitarily equivalent to P ∈ M_m (𝔄_{αk}) for some k ∈ ℕ.
- What are some necessary and sufficient conditions we can put on this P so that we can "rebuild" $\mathscr{A}^{\mathscr{S}}_{\beta}$ by considering $\varinjlim_{n>k} PM_m(A_{\alpha_{2n}})P$?

Directed systems of equivalence bimodules

Consider two directed systems of unital C*-algebras, whose *-morphisms are all unital maps: $\varphi_0 = \varphi_1 + \varphi_2$

$$A_0 \xrightarrow{\varphi_0} A_1 \xrightarrow{\varphi_1} A_2 \xrightarrow{\varphi_2} \cdots$$

and

$$B_0 \xrightarrow{\psi_0} B_1 \xrightarrow{\psi_1} B_2 \xrightarrow{\psi_2} \cdots$$

A sequence $(X_n, i_n)_{n \in \mathbb{N}}$ is a directed system of equivalence bimodule adapted to the sequence $(A_n)_{n \in \mathbb{N}}$ and $(B_n)_{n \in \mathbb{N}}$ when X_n is an A_n - B_n -equivalence bimodule such that the sequence $X_0 \xrightarrow{\iota_0} X_1 \xrightarrow{\iota_1} X_2 \xrightarrow{\iota_2} \cdots$

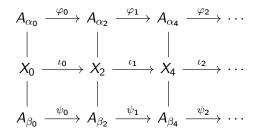
is a directed sequence of modules satisfying

$$\langle \iota_n(f), \iota_n(g) \rangle_{B_{n+1}} = \psi_n\left(\langle f, g \rangle_{B_n}\right), \quad \text{for all } f, g \in X_n,$$

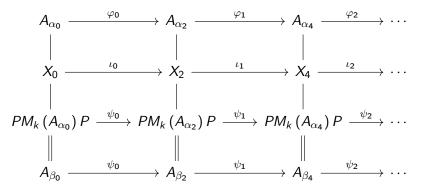
and

$$\iota_n(f \cdot b) = \iota_n(f) \cdot \psi_n(b), \quad \text{for all } f \in X_n, b \in B_n,$$

with analogous but symmetric equalities holding for the X_n viewed as left Hilbert A_n -modules: Recall that $\mathscr{A}_{\alpha}^{\mathscr{S}} = \varinjlim A_{\alpha_{2n}}$. We wish to establish equivalence bimodule X_{2n} between $A_{\alpha_{2n}}$ and $A_{\beta_{2n}}$:



In the case when $\alpha \in \Xi_p$ is an irrational sequence, the idea is to find a projection $P \in M_k(A_{\alpha_0}) \subset M_k(A_{\alpha_{2n}})$ for all n, and consider $PM_k(A_{\alpha_{2n}})P$:



Under certain conditions on the projection P, $\varinjlim PM_k(A_{\alpha_n})P$ converges to a noncommutative solenoid $\mathscr{A}_{\beta}^{\mathscr{S}}$.

Fix α a nonzero real number. Let c and d be a pair of integers that generate \mathbb{Z} , such that $c\alpha + d \neq 0$ and $c \neq 0$. Let $\gamma = (c\alpha + d)^{-1}$. For $\beta = (a\alpha + b)\gamma$, where a and b are integers such that $ad - bc = \pm 1$.

Theorem (Rieffel, '83)

Let $G = \mathbb{R} \times \mathbb{Z}_{|c|}$ and consider the following subgroups of G:

$$H = \{ (n, [dn]_c) : n \in \mathbb{Z} \}, \qquad K = \{ (n\gamma, [n]_c) : n \in \mathbb{Z} \}.$$

Let H act on $K \setminus G$ (the right cosets of K) by right translation, and let K act on G/H (the left cosets of H) by left translation. Then the transformation group C*-algebras $C^*(H, K \setminus G)$ and $C^*(K, G/H)$ are isomorphic to A_{α} and A_{β} , respectively. Furthermore, $C_c(G)$, suitably completed and structured, provides an $A_{\beta}-A_{\alpha}$ -equivalence bimodule.

Lemma (Kodaka '92)

Let *P* be a projection in $M_k(A_\alpha)$ with (unnormalized) trace $c\alpha + d$ (with the same conditions), then Rieffel's standard bimodules is isomorphic to PA_α^k . Therefore, $PM_k(A_\alpha) P \cong A_\beta$.

Let *P* be a nontrivial projection in $M_k(A_{\alpha_0})$ with (unnormalized) trace $c_0\alpha + d_0$ such that (c_0, d_0) generate \mathbb{Z} . As a projection in $M_k(A_{\alpha_{2n}})$,

$$\tau(P) = c_0 \alpha_0 + d_0 = (c_0 p^{2n}) \alpha_{2n} + \left(d_0 - c_0 \sum_{j=0}^{2n-1} x_j p^j \right) = c_{2n} \alpha_{2n} + d_{2n}$$

Key Condition

 $gcd(c_0p, d_0 - c_0x_0) = 1.$

Lemma

If
$$\gcd\left(c_0p,d_0-c_0x_0
ight)=1$$
, then $\gcd\left(c_{2n},d_{2n}
ight)=1$ for all $n\in\mathbb{N}.$

Punchline

Theorem (L.)

Let *P* be a projection in $M_k(A_{\alpha_0})$ that satisfies the Key Condition. Then there exists $\beta \in \Xi_p$ such that $\mathscr{A}_{\alpha}^{\mathscr{S}}$ is Morita equivalent to $\mathscr{A}_{\beta}^{\mathscr{S}} = \varinjlim A_{\beta_{2n}}$, where for each *n*

$$\beta_{2n} = (a_{2n}\alpha_{2n} + b_{2n}) / (c_{2n}\alpha_{2n} + d_{2n}) \in [0, 1)$$

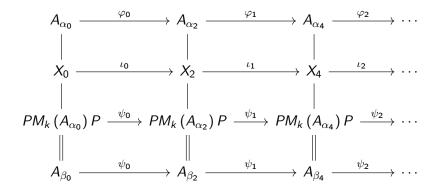
for a unique pair of integers a_{2n} and b_{2n} such that $a_{2n}d_{2n} - b_{2n}c_{2n} = \pm 1$. This β is uniquely determined by $\alpha \in \Xi_p$ and the projection P.

The Key Condition is also necessary in the following sense:

Corollary

Fix prime p. Let $\alpha, \beta \in \Xi_p$. Then the following statements are equivalent.

- $\ \, {\mathscr A}_{\alpha}^{\mathscr S} \ \, {\rm and} \ \, {\mathscr A}_{\beta}^{\mathscr S} \ \, {\rm are} \ \, {\rm Morita} \ \, {\rm equivalent}.$
- ② There exist $k, N \in \mathbb{N}$ and a projection *P* satisfying the Theorem above for $(\beta_n)_{n \ge N}$.



16 / 22

Example

Let p be prime and $\alpha = (\alpha_j)_{j \in \mathbb{N}} \in \Xi_p$ an irrational sequence such that $x_0 \neq 0$. Then the projection $P \in A_{\alpha_0}$ with $\tau_0(P) = \alpha_0$ satisfies the Key Condition and uniquely determines a $\beta \in \Xi_p$ such that $\mathscr{A}^{\mathscr{S}}_{\alpha} \sim_M \mathscr{A}^{\mathscr{S}}_{\beta}$.)

Details:
$$\tau_{2n}(P) = p^{2n} \alpha_{2n} - \sum_{j=0}^{2n-1} b_j p^j$$
, that is,
 $c_{2n} = p^{2n}$ and $d_{2n} = -\sum_{j=0}^{2n-1} x_j p^j$.

Taking
$$_{2n-1}^{2n-1} y_j p^j$$
 and $b_{2n} = p^{-2n} \left(\left(\sum_{j=0}^{2n-1} y_j p^j \right) \left(-\sum_{j=0}^{2n-1} x_j p^j \right) + 1 \right)$,

and setting $\beta_{2n} = (a_{2n}\alpha_{2n} + b_{2n})/(c_{2n}\alpha_{2n} + d_{2n})$, we obtain $\beta = (\beta_n)_{n \in \mathbb{N}}$, which will turn out to be the same β as the one from the Heisenberg module.

Heisenberg Equivalence Bimodules

We follow a construction of Rieffel. Let M be a locally compact abelian group, and $G := M \times \widehat{M}$. The Heisenberg multiplier $\eta : (M \times \widehat{M}) \times (M \times \widehat{M})$ is given by

$$\eta((m,s),(n,t)) = \langle m,t \rangle.$$

Let D be a lattice in $M \times \widehat{M}$, and denote by D^{\perp} the lattice in $M \times \widehat{M}$ given by

$$D^{\perp} = \left\{ (n,t) \in M \times \widehat{M} : \forall (m,s) \in D, \eta ((m,s), (n,t)) \overline{\eta ((n,t), (m,s))} = 1 \right\}$$

Theorem (Rieffel '88)

Suitably completed under an appropriate norm, $C_c(M)$ is a $C^*(D, \eta)$ - $C^*(D^{\perp}, \overline{\eta})$ -equivalence bimodule.

Embed $\mathbb{Z}\left[1/p\right] \times \mathbb{Z}\left[1/p\right]$ into $M \times \widehat{M}$

Let $M := \mathbb{Q}_p \times \mathbb{R}$, where \mathbb{Q}_p denote the field of *p*-adic numbers. \mathbb{Q}_p is self-duel with the pairing $\mathbb{Q}_p \times \mathbb{Q}_p \to \mathbb{T}$, $\langle x, y \rangle = e^{2\pi i \{xy\}_p}$, where $\{x\}_p$ denotes the fractional part of x:

$$\left\{\sum_{j=\nu}^{\infty} x_j p^j\right\}_p = \sum_{j=\nu}^{-1} x_j p^j.$$

Then M is self-dual.

We have $M = \widehat{M} = \mathbb{Q}_p \times \mathbb{R}$. For any $(x, \theta) \in [\mathbb{Q}_p \setminus \{0\}] \times [\mathbb{R} \setminus \{0\}]$, the map

$$\iota_{x,\theta}: \begin{cases} \mathbb{Z}\left[1/\rho\right] \times \mathbb{Z}\left[1/\rho\right] & \to \quad [\mathbb{Q}_{\rho} \times \mathbb{R}] \times [\mathbb{Q}_{\rho} \times \mathbb{R}] \\ (r_1 \times r_2) & \mapsto \left[(x \cdot r_1, \theta \cdot r_1), (r_2, r_2)\right]. \end{cases}$$

is an embedding, and we denote the image of $\iota_{x,\theta}$ by $D_{x,\theta}$. One can check that $D_{x,\theta}^{\perp} \cong \mathbb{Z} \left[1/p \right] \times \mathbb{Z} \left[1/p \right]$.

Embed $\mathbb{Z}\left[1/p\right] \times \mathbb{Z}\left[1/p\right]$ into $M \times \widehat{M}$

Theorem (Packer, Latrémolière, '13)

For every nonzero $\alpha \in \Xi_p$ with $x_0 \neq 0$, $C^*(D_{x,\theta},\eta)$ is *-isomorphic to $\mathscr{A}_{\alpha}^{\mathscr{S}}$ for $x = x_{\alpha}$ and $\theta = \alpha_0$. Furthermore, $C^*(D_{x,\theta}^{\perp},\overline{\eta})$ is *-isomorphic to a noncommutative solenoid.

$$(x=\sum_{j=0}^{\infty}x_jp^j$$
 is invertible in \mathbb{Z}_p iff $x_0
eq 0.)$

Proposition (L.)

Same set up as the theorem above, and let $x_{\alpha}^{-1} = \sum_{j=0}^{\infty} y_j \rho^j \in \mathbb{Z}_p$. Then $C^*(D_{x,\theta}^{\perp}, \overline{\eta})$ is *-isomorphic to $\mathscr{A}_{\beta}^{\mathscr{S}}$, where $\beta = (\beta_n)_{n \in \mathbb{N}}$ is given by $\beta_n = \frac{1}{\theta p^n} + \frac{\sum_{j=0}^{n-1} y_j p^j}{p^n}$.

Remark: The Heisenberg bimodule construction gives the same Morita equivalence bimodules as building directed system of equivalence bimodules using the projection $P \in A_{\alpha_0}$ with $\tau_0(P) = \alpha_0$.

References

- K. Kodaka, Endomorphisms of certain irrational rotation C*-algebras, Illinois J. Math., 1992.
- F. Latrémolière and J. Packer, Noncommutative solenoids, New York J. Math., 2018
- F. Latrémolière and J. Packer, *Explicit construction of equivalence bimodules between noncommutative solenoids*, Vol. 650. Contemp. Math. Amer. Math. Soc., 2013
- M. Rieffel, The cancellation theorem for projective modules over irrational rotation C*-algebras, Proc. London Math., 1983
- M. Rieffel, Projective modules over higher-dimensional non-commutative tori, Canad. J. Math., 1988
- A. M. Robert, A course in p-adic analysis, Vol. 198, Graduate Texts in Mathematics. Springer, 2000

Thank you!