Midterm

1. Let A be a point chosen uniformly at random from the circle $x^{2}+y^{2}=1$. Compute the expectation of the distance from A to some fixed line through the origin.
2. Let $f:[0,1] \rightarrow \mathbb{R}$ be a continuous function. Prove that

$$
\int_{0}^{1} \cdots \int_{0}^{1} f\left(\frac{x_{1}+\cdots+x_{n}}{n}\right) d x_{1} \ldots d x_{n} \longrightarrow f(1 / 2)
$$

as $n \rightarrow \infty$. Hint: Interpret the left-hand side as an expected value; use the law of large numbers.
3. Let X and Y be iid random variables. Show that $X+Y \sim N(0,2)$ if and only if both X and Y are standard normal random variables. (Prove this directly, do not use Cramér's decomposition theorem.)
4. Let $\left(X_{n}\right)_{n=1}^{\infty}$ and $\left(Y_{n}\right)_{n=1}^{\infty}$ be sequences of random variables such that $X_{n}-Y_{n} \rightarrow 0$ in probability. Prove that if $X_{n} \rightarrow X$ in distribution, then $Y_{n} \rightarrow X$ in distribution.
5. Let X_{1}, X_{2}, \ldots be independent random variables, and set

$$
M_{n}=\max \left\{X_{1}, \ldots, X_{n}\right\}
$$

Suppose X_{n} are identically distributed and their distribution function is $F(x)=1-x^{-\alpha}$ for $x>1$ and $F(x)=0$ for $x \leq 1$, with some $\alpha>0$. Show that $M_{n} / n^{1 / \alpha}$ converges in distribution, and find the limit.
6. A random variable X has a lattice distribution if there exists a real number a and a positive number b such that almost surely all values of X have the form $a+b n, n \in \mathbb{Z}$. Prove that X has a lattice distribution if and only if $\left|\phi_{X}(t)\right|=1$ for some $t \neq 0$.
7. Let X_{1}, X_{2}, \ldots be independent random variables such that

$$
\mathbb{P}\left(X_{k}=k^{\alpha}\right)=\mathbb{P}\left(X_{k}=-k^{\alpha}\right)=\frac{1}{2}
$$

where $\alpha \geq-1 / 2$. State and prove a central limit theorem for these random variables.

