Homework # 7

- 1. Let X_1, \ldots, X_n be iid standard normal random variables. Set $X = (X_1, \ldots, X_n)^T$.
 - (a) Prove that UX has the same distribution as X for any deterministic $n \times n$ orthogonal matrix U.
 - (b) Show that

$$\frac{X}{\sqrt{X_1^2 + \dots + X_n^2}}$$

is uniformly distributed on the unit sphere in \mathbb{R}^n .

- 2. Let X_1, \ldots, X_n be iid standard normal random variables, and set $Z_n = \max_{1 \le i \le n} X_i$.
 - (i) Show that the function $(x_1, \ldots, x_n) \mapsto \max_{1 \le i \le n} x_i$ is 1-Lipschitz to deduce that, for any $\lambda > 0$,

$$\mathbb{P}\left(|Z_n - \mathbb{E}Z_n| \ge \lambda\right) \le Ce^{-c\lambda^2},$$

where C, c > 0 are absolute constants.

- (ii) Show that $\mathbb{E}Z_n \leq \sqrt{2\log n}$ for all $n \geq 2$.
- (iii) Use the parts above to deduce that, for all $\lambda > 0$,

$$\mathbb{P}\left(Z_n \ge \lambda + \sqrt{2\log n}\right) \le Ce^{-c\lambda^2},$$

where C, c > 0 are absolute constants.

3. Let X_1, \ldots, X_n be iid standard normal random variables. Set

$$S_n = \sum_{k=1}^n a_k X_k$$

for some $a_1, \ldots, a_n \in \mathbb{R}$. Show that if $||a||^2 = a_1^2 + \cdots + a_n^2 \neq 0$, then, for every $\varepsilon > 0$,

$$\mathbb{P}\left(|S_n| \le \varepsilon\right) \le \frac{\varepsilon}{\|a\|}$$

4. A graph G is **connected** when, for any two vertices x and y of G, there exists a sequence of vertices x_0, x_1, \ldots, x_k such that $x_0 = x$, $x_k = y$, and $x_i \sim x_{i+1}$ for $0 \le i \le k-1$. Show that the random walk on G is irreducible if and only if G is connected.