Homework \# 5

1. Let X be an integrable random variable on the probability space $(\Omega, \mathcal{F}, \mathbb{P})$. If $\mathcal{G}_{1} \subset \mathcal{G}_{2} \subset \mathcal{F}$ are sub- σ-algebras, prove that

$$
\mathbb{E}\left(\mathbb{E}\left(X \mid \mathcal{G}_{2}\right) \mid \mathcal{G}_{1}\right)=\mathbb{E}\left(X \mid \mathcal{G}_{1}\right)
$$

and

$$
\mathbb{E}\left(\mathbb{E}\left(X \mid \mathcal{G}_{1}\right) \mid \mathcal{G}_{2}\right)=\mathbb{E}\left(X \mid \mathcal{G}_{1}\right) .
$$

2. Suppose S_{n} is a Gambler's fortune after n tosses of a fair coin, where the Gambler wins $\$ 1$ if comes up heads and loses $\$ 1$ if the coin comes up tails. Show that $T_{n}=S_{n}^{2}-n$ is a martingale.
3. Let X and Y be iid random variables with finite mean. Show that

$$
\mathbb{E}(X \mid X+Y)=\frac{X+Y}{2} .
$$

4. Define the conditional variance as

$$
\operatorname{Var}(X \mid \mathcal{F})=\mathbb{E}\left(X^{2} \mid \mathcal{F}\right)-\mathbb{E}(X \mid \mathcal{F})^{2}
$$

Show that

$$
\operatorname{Var}(X)=\mathbb{E}(\operatorname{Var}(X \mid \mathcal{F}))+\operatorname{Var}(\mathbb{E}(X \mid \mathcal{F})) .
$$

5. Prove that if $X_{n} \rightarrow X$ in L^{p} as $n \rightarrow \infty$ for some $1 \leq p \leq \infty$, then there exists a subsequence $\left(X_{n_{k}}\right)_{k=1}^{\infty}$ such that $X_{n_{k}} \rightarrow X$ almost surely as $k \rightarrow \infty$.
6. (Bonus Problem) This problem was motivated by a question Katy Smith asked. Let X be an integrable random variable. Is it true that

$$
\mathbb{E}\left(\mathbb{E}\left(X \mid \mathcal{G}_{1}\right) \mid \mathcal{G}_{2}\right)=\mathbb{E}\left(X \mid \mathcal{G}_{1} \cap \mathcal{G}_{2}\right)
$$

for all sub- σ-algebras $\mathcal{G}_{1}, \mathcal{G}_{2}$? If yes, prove the statement; if not, give a counter-example.

