Homework # 4

1. Let X_1, X_2, \ldots be iid uniform random variables on (0, 1). For all $n \ge 1$, define the random variable $M_n = \min\{X_1, \ldots, X_n\}$. Show that

$$nM_n \longrightarrow \operatorname{Exp}(1)$$

in distribution as $n \to \infty$.

2. Show that the sequence of random variables $(X_n)_{n=1}^{\infty}$ is tight if and only if for all $\varepsilon > 0$ there exists M > 0 such that

$$\mathbb{P}(|X_n| \ge M) < \varepsilon$$

for all $n \ge 1$.

- 3. Show that if $(X_n)_{n=1}^{\infty}$ is a tight sequence of random variables such that every convergent subsequence $(X_{n_k})_{k=1}^{\infty}$ has the same distributional limit X, then the sequence $(X_n)_{n=1}^{\infty}$ converges in distribution to X.
- 4. Compute the characteristic functions for the following distributions.
 - (a) Poisson distribution: For λ > 0, we say X has Poisson distribution with parameter λ (i.e. X ~ Poisson(λ)) if, for k = 0, 1, 2, ...,

$$\mathbb{P}(X=k) = e^{-\lambda} \frac{\lambda^k}{k!}$$

- (b) Geometric distribution: $X \sim \text{Geom}(p)$.
- (c) Uniform distribution: $X \sim \text{Uniform}[-1, 1]$.
- (d) Exponential distribution: $X \sim \text{Exp}(\lambda)$.
- 5. Prove the following.
 - (a) If X is a random variable, then $\operatorname{Re}(\varphi_X)$ and $|\varphi_X|^2$ are also characteristic functions (i.e. construct random variables Y and Z such that $\varphi_Y(t) = \operatorname{Re}(\varphi_X(t)), \ \varphi_Z(t) = |\varphi_X(t)|^2$).
 - (b) We say X is **symmetric** if X is equal in distribution to -X. Show that X is symmetric if and only if φ_X is a real-valued function.