Homework \# 3

1. Let X be a random variable. Prove that, for any $\varepsilon>0$, there exists a bounded random variable X_{ε} such that

$$
\mathbb{P}\left(X \neq X_{\varepsilon}\right)<\varepsilon .
$$

2. Show that, for any random variable X and any $a>0$, one has

$$
\int_{\mathbb{R}} \mathbb{P}(x<X<x+a) d x=a
$$

Hint: Apply Fubini's theorem.
3. Let X_{1}, X_{2}, \ldots be iid random variables with distribution

$$
\mathbb{P}\left(X_{1}=2^{k}\right)=2^{-k}, \quad k=1,2,3, \ldots
$$

Set $S_{n}=\sum_{k=1}^{n} X_{k}$. Show that:
(a) $\mathbb{E} X_{1}=\infty$, and hence the WLLN does not apply to $\frac{1}{n} S_{n}$,
(b) one has

$$
\frac{S_{n}}{n \log _{2} n} \xrightarrow{P} 1
$$

as $n \rightarrow \infty$.
Hint: For part (3b), it is helpful to truncate the first n random variables at a level that depends on n. That is, denote $b_{n}=n \log _{2} n, Y_{n, k}=X_{k} \mathbf{1}_{\left\{X_{k}<b_{n}\right\}}, T_{n}=\sum_{k=1}^{n} T_{n, k}$, and $a_{n}=\mathbb{E} T_{n}$. You will want to show that

$$
\frac{T_{n}-a_{n}}{b_{n}} \xrightarrow{P} 0
$$

as $n \rightarrow \infty$.
4. Let $\left(c_{n}\right)_{n=1}^{\infty}$ be a sequence of real numbers. Consider the sum $\sum_{n=1}^{\infty} c_{n} X_{n}$, where X_{1}, X_{2}, \ldots is a sequence of iid symmetric Bernoulli random variables (i.e. X_{1} takes values ± 1 with probability $1 / 2$). Show that if $\sum_{n=1}^{\infty} c_{n}^{2}<\infty$, then the series $\sum_{n=1}^{\infty} c_{n} X_{n}$ converges almost surely. As a bonus, try to prove the converse.
5. Let $X_{0}=(1,0)$, and define $X_{n} \in \mathbb{R}^{2}$ inductively by declaring that X_{n+1} is chosen at random (uniformly) from the ball of radius $\left|X_{n}\right|$ centered at the origin (i.e. $X_{n+1} /\left|X_{n}\right|$ is uniformly distributed on the ball of radius one and independent of X_{1}, \ldots, X_{n}). Prove that

$$
\frac{1}{n} \log \left|X_{n}\right| \xrightarrow{\text { a.s. }} c
$$

as $n \rightarrow \infty$ and compute c.

