Homework # 3

1. Let X be a random variable. Prove that, for any $\varepsilon > 0$, there exists a bounded random variable X_{ε} such that

$$\mathbb{P}(X \neq X_{\varepsilon}) < \varepsilon.$$

2. Show that, for any random variable X and any a > 0, one has

$$\int_{\mathbb{R}} \mathbb{P}(x < X < x + a) dx = a.$$

Hint: Apply Fubini's theorem.

3. Let X_1, X_2, \ldots be iid random variables with distribution

$$\mathbb{P}(X_1 = 2^k) = 2^{-k}, \quad k = 1, 2, 3, \dots$$

Set $S_n = \sum_{k=1}^n X_k$. Show that:

- (a) $\mathbb{E}X_1 = \infty$, and hence the WLLN does not apply to $\frac{1}{n}S_n$,
- (b) one has

$$\frac{S_n}{n\log_2 n} \xrightarrow{P} 1$$

as $n \to \infty$.

Hint: For part (3b), it is helpful to truncate the first *n* random variables at a level that depends on *n*. That is, denote $b_n = n \log_2 n$, $Y_{n,k} = X_k \mathbf{1}_{\{X_k < b_n\}}$, $T_n = \sum_{k=1}^n T_{n,k}$, and $a_n = \mathbb{E}T_n$. You will want to show that

$$\frac{T_n - a_n}{b_n} \xrightarrow{P} 0$$

as $n \to \infty$.

- 4. Let $(c_n)_{n=1}^{\infty}$ be a sequence of real numbers. Consider the sum $\sum_{n=1}^{\infty} c_n X_n$, where X_1, X_2, \ldots is a sequence of iid symmetric Bernoulli random variables (i.e. X_1 takes values ± 1 with probability 1/2). Show that if $\sum_{n=1}^{\infty} c_n^2 < \infty$, then the series $\sum_{n=1}^{\infty} c_n X_n$ converges almost surely. As a bonus, try to prove the converse.
- 5. Let $X_0 = (1,0)$, and define $X_n \in \mathbb{R}^2$ inductively by declaring that X_{n+1} is chosen at random (uniformly) from the ball of radius $|X_n|$ centered at the origin (i.e. $X_{n+1}/|X_n|$ is uniformly distributed on the ball of radius one and independent of X_1, \ldots, X_n). Prove that

$$\frac{1}{n}\log|X_n| \xrightarrow{a.s.} c$$

as $n \to \infty$ and compute c.