Homework \# 1

1. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Show that
(i) If $A, B \in \mathcal{F}$, then

$$
\mathbb{P}(A \cup B)=\mathbb{P}(A)+\mathbb{P}(B)-\mathbb{P}(A \cap B)
$$

(ii) If $A_{1}, A_{2}, \ldots \in \mathcal{F}$ such that $A_{1} \subset A_{2} \subset A_{3} \subset \cdots$, then

$$
\mathbb{P}\left(\cup_{n=1}^{\infty} A_{n}\right)=\lim _{n \rightarrow \infty} \mathbb{P}\left(A_{n}\right)
$$

2. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, and let $A \in \mathcal{F}$. Show that the set of all $B \in \mathcal{F}$ which satisfy

$$
\mathbb{P}(A \cap B)=\mathbb{P}(A) \mathbb{P}(B)
$$

is a λ-system.
3. Let $\left(\Omega_{1}, \mathcal{F}_{1}\right)$ and $\left(\Omega_{2}, \mathcal{F}_{2}\right)$ be two measurable spaces such that \mathcal{F}_{2} is the σ-algebra generated by a collection \mathcal{A} of subsets of Ω_{2}. Prove that a function $X: \Omega_{1} \rightarrow \Omega_{2}$ is measurable if and only if $X^{-1}(A) \in \mathcal{F}_{1}$ for all $A \in \mathcal{A}$.
4. Let X be a random variable. Show that μ_{X} is a probability measure on $(\mathbb{R}, \mathcal{B})$.
5. Let X be a random variable, and suppose $F(x)=\mathbb{P}(X \leq x)$ is continuous. Show that $Y=F(X)$ has a uniform distribution on $(0,1)$.

