Homework # 3

- 1. Suppose $f : \mathbb{R} \to \mathbb{R}$ is Lebesgue measurable and $g : \mathbb{R} \to \mathbb{R}$ is continuous. Prove that $g \circ f$ is Lebesgue measurable.
- 2. Let (X, \mathcal{A}) be a measurable space. Let $\{f_n\}$ be a sequence of measurable real-valued functions on X. Show that

$$A = \left\{ x \in X : \lim_{n \to \infty} f_n(x) \text{ exists} \right\}$$

is an \mathcal{A} -measurable set.

3. Let X be the integers with the discrete metric

$$\rho(m,n) = \begin{cases} 1, & \text{if } m \neq n, \\ 0, & \text{if } m = n. \end{cases}$$

Check that ρ is a metric. Show that X is closed and bounded, but not compact.

- 4. Prove that every compact subset of a metric space is closed and bounded. Prove that a closed subset of a compact space is compact.
- 5. A metric space (X, ρ) is said to be an *ultrametric space* if

$$\rho(x, y) \le \max\{\rho(x, z), \rho(z, y)\}$$

for all $x, y, z \in X$. Prove that, in an ultrametric space, every open ball

$$B(x, r) = \{ y \in X : \rho(x, y) < r \}$$

is also closed.

6. A metric space (X, ρ) is said to be *perfect* if every point in X is an accumulation point, meaning that it is the limit of a sequence of other points in the space.

Let $X = \{0, 1\}^{\mathbb{N}}$ be the space of all sequences consisting of zeros or ones:

$$X = \{(s_1, s_2, s_3, \ldots) : s_n \in \{0, 1\}\}.$$

Define $\rho: X \times X \to [0,\infty)$ by

$$\rho(\mathbf{s}, \mathbf{t}) = \sum_{n=1}^{\infty} \frac{\delta_n}{2^n},$$

where $\mathbf{s} = (s_1, s_2, s_3, \ldots), \mathbf{t} = (t_1, t_2, t_3, \ldots)$, and

$$\delta_n = \begin{cases} 0, & \text{if } s_n = t_n, \\ 1, & \text{if } s_n \neq t_n. \end{cases}$$

- (a) Prove that ρ is a metric on X.
- (b) Show that X is compact and perfect.
- (c) Define the shift map $\sigma: X \to X$ by

$$\sigma(s_1, s_2, s_3, \ldots) = (s_2, s_3, s_4, \ldots)$$

Prove that σ is continuous. Is σ uniformly continuous?