Solutions to Homework \#11

1. (a) Let f be differentiable on $[a, b]$ and suppose f^{\prime} is continuous on $[a, b]$. By the Extreme Value Theorem, there exist $M>0$ such that $\left|f^{\prime}(x)\right| \leq M$ for all $x \in[a, b]$. We will prove that

$$
|f(y)-f(x)| \leq M|y-x|
$$

for all $x, y \in[a, b]$. Let $x, y \in[a, b]$. If $x=y$, then clearly $|f(y)-f(x)|=0=M|y-x|$. Suppose $x \neq y$, and without loss of generality, assume $x<y$. Then, by the Mean Value Theorem applied to the interval $[x, y]$, there exists $c \in(x, y)$ such that

$$
f(y)-f(x)=f^{\prime}(c)(y-x)
$$

Thus, we obtain

$$
|f(y)-f(x)|=\left|f^{\prime}(c)\right||y-x| \leq M|y-x|
$$

We conclude that f is Lipschitz on $[a, b]$.
(b) The conclusion follows from part (a) by noting that $f^{\prime}(x)=\cos (x)$ is continuous.
3. (a) $f(x)=|x|$ is Lipschitz on \mathbb{R}, but not differentiable at zero.
(b) Take

$$
f(x)= \begin{cases}0, & \text { if } x<1 / 2 \\ 1, & \text { if } x \geq 1 / 2\end{cases}
$$

(c) The function f from part (b) is increasing, but not differentiable (since its not continuous at $x=1 / 2)$.
5. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable. We will prove the contrapositive statement. To that end, assume f is not one-to-one. Then there exits $x, y \in \mathbb{R}$ with $x<y$ such that $f(x)=f(y)$. By the Mean Value Theorem applied to the interval $[x, y]$, there exists $c \in(x, y)$ such that

$$
f^{\prime}(c)=\frac{f(y)-f(x)}{y-x}=0
$$

