Practice Final

The following is a list of problems I consider final-worthy. This list of problems should serve as a good place to start studying, and it should not be considered a comprehensive list of problems from the sections we've covered. YOU are responsible for studying all the sections to be covered on the final.

1. Let $K \subset \mathbb{R}$ consist of 0 and the numbers $1 / n$, for $n=1,2, \ldots$. Prove that K is compact directly from the definition.
2. Use the $\varepsilon-\delta$ definition of functional limits to how that

$$
\lim _{x \rightarrow 2} \frac{1}{x^{2}}=\frac{1}{4}
$$

3. Suppose that $f:[a, b] \rightarrow[a, b]$ is continuous. Prove that f has a fixed point. That is, prove that there exists $c \in[a, b]$ such that $f(c)=c$.
4. Let $a_{n}=\sqrt{n^{2}+n}-n$. Calculate $\lim \left(a_{n}\right)$.
5. Define $a_{1}=1$ and

$$
a_{n+1}=\sqrt{1+\sqrt{a_{n}}}
$$

for $n \in \mathbb{N}$. Does $\left(a_{n}\right)$ converge? If so, what is the limit?
6. Assume $f:[a, b] \rightarrow \mathbb{R}$ is integrable.
(a) Show that if g satisfies $g(x)=f(x)$ for all but a finite number of points in $[a, b]$, then g is integrable as well.
(b) Find an example to show that g may fail to be integrable if it differs from f at a countable number of points.
7. Prove the mean value theorem for integrals: If f is continuous on $[a, b]$, then there exists $c \in(a, b)$ such that

$$
f(c)=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

8. Prove the inequality:

$$
\frac{x}{1+x} \leq \ln (1+x) \leq x \text { for all } x>-1
$$

9. Give an example of a function $f:[0,1] \rightarrow \mathbb{R}$ such that f is not integrable on $[0,1]$, but f^{2} is integrable on $[0,1]$.
10. For $x, y \in \mathbb{R}$, define

$$
\begin{aligned}
d_{1}(x, y) & =(x-y)^{2} \\
d_{2}(x, y) & =\sqrt{|x-y|} \\
d_{3}(x, y) & =\left|x^{2}-y^{2}\right| \\
d_{4}(x, y) & =|x-2 y| \\
d_{5}(x, y) & =\frac{|x-y|}{1+|x-y|}
\end{aligned}
$$

Determine, for each of these, whether it is a metric or not.
11. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfy $|f(x)-f(y)| \leq(x-y)^{2}$ for all $x, y \in \mathbb{R}$. Show that f is constant.
12. Suppose f is continuous on $[a, b], f(x) \geq 0$ for all $x \in[a, b]$, and $\int_{a}^{b} f(x) d x=0$. Prove that $f(x)=0$ for all $x \in[a, b]$.
13. Find an open cover of \mathbb{R} that has no finite subcover.
(Bonus) A real-valued function f defined in (a, b) is said to be convex if

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)
$$

whenever $x, y \in(a, b)$ and $\lambda \in(0,1)$. Prove that every convex function is continuous.

