Select solutions to Homework \#8

19.4 For each part below, I will simply state the set S of sub-sequential limits. The limit superior and limit inferior easily follow from S and Definition 19.9. Formally, Definition 19.9 implies that S is always a set of real numbers. However, following the practice problems (see Practice 19.15), we will include $+\infty$ (alternatively, $-\infty$) if there exists a subsequence which diverges to $+\infty$ (alternatively, $-\infty$).
(a) $S=\{0\}$ since $\left(s_{n}\right)$ converges to 0 .
(b) $S=\{0,1,+\infty\}$.
(c) $S=\{+\infty\}$.
(d) $S=\{+\infty,-\infty\}$.
19.9 Assume $\limsup s_{n}=s=\liminf s_{n}$. Then, by Definition 19.9, it follows that $S=\{s\}$, where S is the set of sub-sequential limits of $\left(s_{n}\right)$. Assume $\left(s_{n}\right)$ does not converge to s. Then there exists $\varepsilon>0$ and a subsequence $\left(s_{n_{k}}\right)_{k=1}^{\infty}$ of $\left(s_{n}\right)$ such that

$$
\begin{equation*}
\left|s_{n_{k}}-s\right|>\varepsilon \quad \text { for all } k \in \mathbb{N} \tag{1}
\end{equation*}
$$

By Theorem 19.7, there exists a further subsequence $\left(s_{n_{k_{l}}}\right)_{l=1}^{\infty}$ that converges. Since $\left(s_{n_{k_{l}}}\right)_{l=1}^{\infty}$ is a subsequence of $\left(s_{n}\right)$, it must be the case that $\left(s_{n_{k_{l}}}\right)_{l=1}^{\infty}$ converges to s (recall that $S=\{s\}$). This contradictions (1). Therefore, we conclude that $\lim s_{n}=s$.
20.4 Take $\delta=1 / 36$. Then,

$$
\left|x^{2}+2 x-15\right| \leq|x-3||x+5|<\delta|x+5|=\frac{1}{36}|x+5|
$$

Thus, it suffices to show $|x+5| \leq 9$. Indeed, since $\delta<1$,

$$
|x+5|=|x-3+8| \leq|x-3|+8 \leq 1+8=9
$$

and the proof is complete.

