Select solutions to Homework \#7

17.8 (a) Consider $s_{n}=1$.
(b) Take $t_{n}=n$.
17.9 Suppose $\lim s_{n}=+\infty$ and $s_{n} \leq t_{n}$ for all $n \in \mathbb{N}$. Then, for every M, there exists N such that $s_{n}>M$ whenever $n>N$. Thus, for $n>N$, we obtain $t_{n} \geq s_{n}>M$. Hence, we conclude that $\lim t_{n}=+\infty$. The proof of part (b) is similar.
17.16 Let c be a real number such that $1<c<L$ (such a choice is always possible by Theorem $12.12)$. Set $\varepsilon=L-c>0$. Then there exists $N \in \mathbb{N}$ such that

$$
\left|\frac{s_{n+1}}{s_{n}}-L\right|<\varepsilon
$$

whenever $n>N$. Thus, for $n>N$

$$
\frac{s_{n+1}}{s_{n}}=\left|\frac{s_{n+1}}{s_{n}}\right| \geq L-\left|\frac{s_{n+1}}{s_{n}}-L\right| \geq L-\varepsilon=c
$$

by the reverse triangle inequality. Therefore, for $n>N$, we conclude that $s_{n+1} \geq c s_{n}$. Define $k=N+1$. Then, for $n>k$, we iterate the previous inequality to obtain

$$
s_{n} \geq c s_{n-1} \geq \cdots \geq c^{n-k} s_{k}
$$

Define $M=c^{-k} s_{k}>0$. Then we have shown that, for $n>k$,

$$
s_{n} \geq M c^{n}
$$

Since $\lim c^{n}=+\infty$, it follows that $\lim s_{n}=+\infty$ by Theorem 17.12.
18.4 (a) $s_{n}=(-1)^{n} \frac{1}{n}$.
(b) $t_{n}=n$.
(c) $u_{n}=(-1)^{n}$.

