Select solutions to Homework \#4

11.6 (a) By the triangle inequality,

$$
\begin{equation*}
|x|=|x-y+y| \leq|x-y|+|y| . \tag{1}
\end{equation*}
$$

Similarly,

$$
|y|=|y-x+x| \leq|y-x|+|x| .
$$

Thus, rearranging slightly, we have

$$
-|x-y| \leq|x|-|y| \leq|x-y|
$$

Here we used the property that $|x-y|=|y-x|$. By Theorem 11.9, we conclude that $||x|-|y|| \leq|x-y|$. This inequality is usually known as the reverse triangle inequality.
(b) By (1), $|x| \leq|x-y|+|y|<c+|y|$ whenever $|x-y|<c$.
(c) Assume $|x-y|<\varepsilon$ for all $\varepsilon>0$. By Theorem 11.7, this implies that that $|x-y|=0$. Hence, by Theorem 11.9, we obtain $x=y$.
12.10 (a) This proof was inspired by an idea of Zack Thoutt. Fix $x, y \in \mathbb{R}$ with $x<y$. Define

$$
N=\{n \in \mathbb{N}: \text { there exists at least } n \text { rational numbers in the interval }(x, y)\}
$$

By induction, we will show that $N=\mathbb{N}$. Theorem 12.12 implies that $1 \in N$. Assume $n \in N$. Then there exists rational numbers r_{1}, \ldots, r_{n} such that $x<r_{1}<\cdots<r_{n}<y$. By Theorem 12.12, there exists a rational number r_{n+1} such that $r_{n}<r_{n+1}<y$, and hence $n+1 \in N$. By the principle of induction, we conclude that $N=\mathbb{N}$.
To complete the proof, assume there only exists a finite number n of rational numbers between x and y. By the proceeding argument, $n+1 \in N$, which contradicts the assumption that there were only n rational numbers between x and y. Therefore, we conclude that there must be an infinite number of rational numbers between x and y.
13.7 (a) Take $S=\{1 / n: n \in \mathbb{N}\}$.
(c) Take $S=(1,2) \cup(2,3)$.
(e) Try $S=\mathbb{Q}$.
13.9 (b) Let x be a boundary point of S. Then $N(x, \varepsilon) \cap S \neq \emptyset$ and $N(x, \varepsilon) \cap(\mathbb{R} \backslash S) \neq \emptyset$ for all $\varepsilon>0$. Suppose x is not an accumulation point of S (for if it is an accumulation point, we are done). Notice that if $x \notin S$, then $N^{*}(x, \varepsilon) \cap S \neq \emptyset$ for every $\varepsilon>0$, and x would be an accumulation point of S. Thus, it must be the case that $x \in S$. But, by definition, this implies that x is an isolated point, completing the proof.

