11.6 (a) By the triangle inequality,

$$|x| = |x - y + y| \le |x - y| + |y|.$$
(1)

Similarly,

$$|y| = |y - x + x| \le |y - x| + |x|$$

Thus, rearranging slightly, we have

$$-|x-y| \le |x| - |y| \le |x-y|$$

Here we used the property that |x - y| = |y - x|. By Theorem 11.9, we conclude that $||x| - |y|| \le |x - y|$. This inequality is usually known as the **reverse triangle inequality**.

- (b) By (1), $|x| \le |x y| + |y| < c + |y|$ whenever |x y| < c.
- (c) Assume $|x y| < \varepsilon$ for all $\varepsilon > 0$. By Theorem 11.7, this implies that that |x y| = 0. Hence, by Theorem 11.9, we obtain x = y.
- 12.10 (a) This proof was inspired by an idea of Zack Thoutt. Fix $x, y \in \mathbb{R}$ with x < y. Define

 $N = \{n \in \mathbb{N} : \text{there exists at least } n \text{ rational numbers in the interval } (x, y)\}.$

By induction, we will show that $N = \mathbb{N}$. Theorem 12.12 implies that $1 \in N$. Assume $n \in N$. Then there exists rational numbers r_1, \ldots, r_n such that $x < r_1 < \cdots < r_n < y$. By Theorem 12.12, there exists a rational number r_{n+1} such that $r_n < r_{n+1} < y$, and hence $n + 1 \in N$. By the principle of induction, we conclude that $N = \mathbb{N}$.

To complete the proof, assume there only exists a finite number n of rational numbers between x and y. By the proceeding argument, $n+1 \in N$, which contradicts the assumption that there were only n rational numbers between x and y. Therefore, we conclude that there must be an infinite number of rational numbers between x and y.

- 13.7 (a) Take $S = \{1/n : n \in \mathbb{N}\}.$
 - (c) Take $S = (1, 2) \cup (2, 3)$.
 - (e) Try $S = \mathbb{Q}$.
- 13.9 (b) Let x be a boundary point of S. Then $N(x,\varepsilon) \cap S \neq \emptyset$ and $N(x,\varepsilon) \cap (\mathbb{R} \setminus S) \neq \emptyset$ for all $\varepsilon > 0$. Suppose x is not an accumulation point of S (for if it is an accumulation point, we are done). Notice that if $x \notin S$, then $N^*(x,\varepsilon) \cap S \neq \emptyset$ for every $\varepsilon > 0$, and x would be an accumulation point of S. Thus, it must be the case that $x \in S$. But, by definition, this implies that x is an isolated point, completing the proof.