
Select solutions to Homework #4

11.6 (a) By the triangle inequality,

|x| = |x− y + y| ≤ |x− y|+ |y|. (1)

Similarly,
|y| = |y − x + x| ≤ |y − x|+ |x|.

Thus, rearranging slightly, we have

−|x− y| ≤ |x| − |y| ≤ |x− y|.

Here we used the property that |x − y| = |y − x|. By Theorem 11.9, we conclude that
||x|− |y|| ≤ |x−y|. This inequality is usually known as the reverse triangle inequality.

(b) By (1), |x| ≤ |x− y|+ |y| < c + |y| whenever |x− y| < c.

(c) Assume |x − y| < ε for all ε > 0. By Theorem 11.7, this implies that that |x − y| = 0.
Hence, by Theorem 11.9, we obtain x = y.

12.10 (a) This proof was inspired by an idea of Zack Thoutt. Fix x, y ∈ R with x < y. Define

N = {n ∈ N : there exists at least n rational numbers in the interval (x, y)}.

By induction, we will show that N = N. Theorem 12.12 implies that 1 ∈ N . Assume
n ∈ N . Then there exists rational numbers r1, . . . , rn such that x < r1 < · · · < rn < y.
By Theorem 12.12, there exists a rational number rn+1 such that rn < rn+1 < y, and
hence n + 1 ∈ N . By the principle of induction, we conclude that N = N.
To complete the proof, assume there only exists a finite number n of rational numbers
between x and y. By the proceeding argument, n+1 ∈ N , which contradicts the assump-
tion that there were only n rational numbers between x and y. Therefore, we conclude
that there must be an infinite number of rational numbers between x and y.

13.7 (a) Take S = {1/n : n ∈ N}.
(c) Take S = (1, 2) ∪ (2, 3).

(e) Try S = Q.

13.9 (b) Let x be a boundary point of S. Then N(x, ε) ∩ S 6= ∅ and N(x, ε) ∩ (R \ S) 6= ∅ for all
ε > 0. Suppose x is not an accumulation point of S (for if it is an accumulation point,
we are done). Notice that if x 6∈ S, then N∗(x, ε) ∩ S 6= ∅ for every ε > 0, and x would
be an accumulation point of S. Thus, it must be the case that x ∈ S. But, by definition,
this implies that x is an isolated point, completing the proof.
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