Select solutions to Homework \#3

8.8 (a) Assume $S \subseteq T$. Define $f: S \rightarrow T$ by $f(x)=x$. Since f is injective by construction, $|S| \leq|T|$
(b) Follows from part (a).
(c) Assume $|S| \leq|T|$ and $|T| \leq|U|$. Then there exists injections $f: S \rightarrow T$ and $g: T \rightarrow U$. By Theorem 7.19, $g \circ f: S \rightarrow U$ is injective. Thus, $|S| \leq|U|$.
(d) Follows form part (a).
(e) Suppose S is a finite nonempty set. Then there exists $n \in \mathbb{N}$ and a bijection $f: I_{n} \rightarrow S$. It follows that $f^{-1}: S \rightarrow \mathbb{N}$ is injective, and so $|S| \leq|\mathbb{N}|$. We now show $|S| \neq|\mathbb{N}|$. Suppose, to the contrary, that $|S|=|\mathbb{N}|$. In other words, suppose there exists a bijection $g: S \rightarrow \mathbb{N}$. Then, by Theorem 7.19, $g \circ f: I_{n} \rightarrow \mathbb{N}$ is a bijection. This implies that \mathbb{N} is finite, a contradiction. We conclude that $|S|<|\mathbb{N}|$. The case when S is the empty set is trivial.
8.17 If $A \subseteq B$, then any subset S of A is also a subset of B since $S \subseteq A \subseteq B$. Thus, $\mathcal{P}(A) \subseteq \mathcal{P}(B)$. Conversely, if $\mathcal{P}(A) \subseteq \mathcal{P}(B)$, then

$$
A \in \mathcal{P}(A) \subseteq \mathcal{P}(B)
$$

and hence $A \subseteq B$.
8.19 (a) Assume $|S| \leq|T|$. Then there exists an injection $f: S \rightarrow T$. Define $g: \mathcal{P}(S) \rightarrow \mathcal{P}(T)$ by

$$
g(A)=f(A) \quad \text { for all } A \in \mathcal{P}(S)
$$

It suffices to show that g is injective. That is, we will show that if $g(A)=g(B)$ for some sets $A, B \in \mathcal{P}(S)$, then $A=B$. Suppose $g(A)=g(B)$. By definition of g, this implies that $f(A)=f(B)$. From Theorem 7.17, we conclude that $A=B$, and hence g is injective.
10.26 Let

$$
N=\left\{n \in \mathbb{N}: \text { there exists } k \text { such that } n \leq k^{2} \leq 2 n\right\}
$$

Clearly $1 \in N$. Suppose $n \in N$. Then there exists an integer k such that $n \leq k^{2} \leq 2 n$. If $k^{2}>n$, then $n+1 \leq k^{2} \leq 2(n+1)$. Thus, it suffices to consider the case when $k^{2}=n$. In this case,

$$
n+1=k^{2}+1 \leq(k+1)^{2} \leq 2\left(k^{2}+1\right)=2(n+1)
$$

by Exercise 4.25. Therefore, $n+1 \in N$. By the principle of induction, we conclude that $N=\mathbb{N}$.

